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Abstract

We explore a model of duopolistic competition in which consumers flexibly learn

about the fit–both relative and absolute–of each competitor’s product. When infor-

mation is cheap, increasing the cost of information decreases consumer welfare; but

when information is expensive, this relationship flips: cheaper information hurts con-

sumers. When the sellers’ goods are both high and low value with positive probability,

as information frictions vanish, the limiting equilibrium is efficient, in contrast to the

monopoly model studied by Ravid et al. (2022).
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1 Introduction

Suppose your smartphone breaks and you need to buy a new one. A few aspects of this

purchase stand out. First, there are multiple phones you could buy. Second, the techno-

logical differences between the phones are not perfectly clear, so the value to you of each

phone is equally unclear. Third, there is a lot of information available online about the

different phone options, but accessing or parsing it comes at a cost. Finally, the sellers of

smartphones are not ignorant of these details; they set prices while taking into explicit

account that they compete with other sellers and that consumers are learning about both

products. Many markets, such as cars, appliances, electronics, and contractors, share

these features.

We study a stylized model that incorporates flexible, costly learning by a buyer and

competition between sellers. The model closely resembles Ravid, Roesler, and Szentes

(2022) but with multiple sellers and horizontally differentiated products. Initially, the

buyer only knows a prior distribution of the value of each object. However, the buyer can

learn more about her value of each product at a cost. Like learning about smartphones

on the internet, the consumer’s ability to learn is extremely flexible: she can acquire any

signal about her valuations. Signals are costly, but we assume this cost is smooth and

strictly increasing in how informative the signal is, and the sellers set prices without

learning the buyer’s strategy or signal realization.

In the single seller case, Ravid, Roesler, and Szentes (2022) expose the troubling result

that in a bilateral-trade setting with “learning before trading,” as information costs go to

zero, the limit equilibrium is extremely inefficient. To be more precise, they show there

exists a continuum of equilibria when information is free. As information costs vanish,

the equilibrium converges to the worst free-learning equilibrium. Even though trade is

always beneficial and information is free, the consumer does not purchase with strictly

positive probability. Ours is the oligopolistic analog of Ravid, Roesler, and Szentes (2022):

we wish to understand whether and how competition potentially alters this result. In

their paper, a hold-up problem generates inefficiencies. Does the competition of our

setting mitigate this issue?
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Our main result proves that, with multiple sellers, as the information costs vanish, the

limiting equilibrium is efficient. If the main takeaway from Ravid, Roesler, and Szentes

(2022) is "that possessing information might be significantly better than having cheap

access to it," one takeaway from our paper is that competition overturns that result: pos-

sessing cheap information is similar to having cheap access to it. Along the way, we must

solve a pricing game between the firms, conditional on the level of learning attained. As

in other papers, the equilibrium pricing strategies involve a distribution of prices that

generate unit-elastic residual demand curves (Albrecht, 2020; Condorelli and Szentes,

2020).

The more difficult part of constructing the equilibrium is solving for optimal learning,

given the pricing strategies. A learning strategy means picking a distribution of poste-

riors that is Bayes’ plausible. First, we prove that it is always optimal for the buyer to

choose learning strategies that reveal only the relative value. We call this "comparison

shopping." Vaguely, if (x,y) is the consumer’s valuation for goods from seller one and

seller two, she learns only along some line y = A − x. For example, it is optimal to learn

sometimes that good one is λ better than good two and sometimes learn good two is λ

better. As information becomes cheaper, the consumer acquires posteriors further and

further from the prior. One complication that arises in constructing the optimal learn-

ing is that they eventually “run into the boundary” of the square. In that situation, they

“leave” beliefs at the prior.

The equilibrium requires solving a multidimensional information design problem on

top of an equilibrium pricing game. In our problem, the value of posterior beliefs is

not exogenous but an endogenous object that depends on the firms’ pricing, which is

random. We can prove that in equilibrium, the consumer learns the relative value, i.e.,

comparison shops, but that is endogenous, not exogenous. To make progress, we impose

various assumptions. For example, the boundary conditions mentioned create problems

for our equilibrium construction, meaning we cannot always solve the problem for a

general distribution of beliefs. Instead, much of the paper focuses on the case when

each firm’s product takes on one of two values.1 Reassuringly, we show when learning

1Ravid et al. (2022) assume that the consumer’s valuation is distributed on the unit interval according
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costs are sufficiently high, there is an analogous equilibrium for a distribution of beliefs

so that this binary-value assumption is innocuous.

After constructing the equilibrium, we conduct simple comparative statics to ask

questions like "when does cheaper information increase consumer welfare?" Even with-

out the cost of acquiring information, there is a trade-off for the consumer.2 If she ac-

quires more information, she has a better match quality with the seller, but that softens

competition between the sellers. If she remains ignorant, she can induce stronger price

competition, but her lack of information hurts her purchase decision. When the cost of

information is high, consumer welfare is decreasing in the cost of information, but when

information is cheap, this relationship flips. In Section 6 we show that these comparative

statics persist beyond the binary-match-value environment.

The rest of the paper is as follows: Section 1.1 covers related work, Section 2 sets

up the model, Section 3 sets up the benchmark where sellers observe what the buyers

learn, Section 4 solves the optimal pricing game, given the information acquired, Section

5 solves for optimal learning, given the equilibrium pricing, and proves the main results,

and finally Section 6 illustrates how much of our analysis carries over to the case when

the consumer’s prior has a density.

1.1 Related Work

Beyond the closest paper to ours, Ravid et al. (2022), there is now a sizeable collection

of papers that study the important question, “what can happen in markets under differ-

ent information structures?” Bergemann et al. (2021) asks this in the context of a search

market, and Bergemann et al. (2015) characterizes possible market outcomes when there

is a single monopolistic seller. Condorelli and Szentes (2022) look at Cournot compe-

tition through this lens, while Roesler and Szentes (2017) and Condorelli and Szentes

(2020) study consumer-optimal information and distributions over valuations, respec-

to some prior with a density. Their inefficiency result persists if the consumer’s valuation is either high or

low, instead.

2Many papers explore this trade-off, e.g., Moscarini and Ottaviani (2001), Armstrong and Zhou (2016),

and Albrecht (2020).
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tively. Armstrong and Zhou (2022), Albrecht (2020), Shi and Zhang (2022), Elliott et al.

(2019), Rhodes and Zhou (2022), Armstrong and Vickers (2022), and Dogan and Hu

(2022) all study variations on this theme in markets with imperfect competition. Of spe-

cial note is Moscarini and Ottaviani (2001), who study price competition by duopolists

who face a privately informed buyer. Crucially, in their work the consumer’s informa-

tion is exogenous, and they study the pricing-only game between the firms. Our work

incorporates explicit information acquisition, but since we allow any signal, it is similar

in spirit to the papers above.

There are a number of papers that explore information acquisition in markets by con-

sumers. Many limit their analysis to the monopolist scenario. Branco et al. (2012), Branco

et al. (2016), Pease (2018), and Lang (2019) all look at how a monopolist sells to con-

sumers who may subsequently acquire information about their valuation for the product.

Importantly, in these papers, the consumer observes the firm’s price before deciding how

and what to learn. This timing is also assumed in the oligopolistic setting of Matějka and

McKay (2012).3 Jain and Whitmeyer (2023) explore flexible information acquisition by

consumers in a large oligopolistic market with search frictions á la Wolinsky (1986). Like

this paper, the primary focus there is the case in which the consumer acquires informa-

tion before observing a firm’s price offer.

Finally, as we stated in the introduction, our equilibrium construction requires solv-

ing a multidimensional information design problem along with a pricing equilibrium.

We use recent technical developments in multidimensional Bayesian persuasion and in-

formation design settings. More specifically, we use results and insights from Dworczak

and Kolotilin (2019), Yoder (2021), and Kleiner et al. (2023).

3The literature on information acquisition in auctions/mechanism design (e.g., Persico (2000), Shi

(2012), Kim and Koh (2022), Mensch (2022), and Thereze (2022)) also imposes that the mechanism is

publicized–and committed to by the designer–before consumers acquire information.
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2 Model

There are 2 ex ante identical horizontally differentiated firms, indexed by i. Each of

them is selling a product whose value to a representative consumer is a identically dis-

tributed binary random variable Zi with support on {0,1} and µ B P (Zi = 1) ∈ (0,1) for

all i. We also assume that the joint distribution of the random variables is symmetric:

P (Z1 = 1|Z2 = v) = P (Z2 = 1|Z1 = v) for all v ∈ {0,1}. We denote ωB P (Z2 = 1,Z1 = 0).

For many of the results we specialize to the following three cases:

(i) Positive correlation not too high, and prior not too extreme: µ and ω are such that

0 < ω ≤ 4
5

min
{
µ,1−µ

}
.

Note that this specializes to 1
5 ≤ µ ≤ 4

5 in the i.i.d. case.

(ii) At most one product is high value: P (Z1 = 1,Z2 = 1) = 0, i.e., ω = µ.

(iii) At most one product is low value: P (Z1 = 1,Z2 = 0) = 0, i.e., ω = 1−µ.

The consumer privately learns about the state of the world at a cost, formalized as

follows. Let F denote the set of all distributions supported on [0,1]2 that are fusions of

the prior, i.e., that can be obtained by observing some signal. The consumer may acquire

any fusion F ∈F at cost C : F→R, where C satisfies the following assumptions:

Assumptions on the Cost Functional: We assume for any F ∈F,

C (F) = κ

∫
cdF ,

for some strictly convex, thrice differentiable, function c and scalar κ > 0, with

c (µ,µ) = 0, c (x,y) <∞ for all (x,y) ∈ (0,1)2, and lim(x′ ,y′)→(x,y)

∣∣∣Dc (x′, y′)
∣∣∣ =∞ for all

(x,y) ∈ ∂ [0,1]2.

We assume further that c is symmetric: for any permutation σ (x,y) of vector (x,y),

c (x,y) = c (σ (x,y)). We also make the following technical assumption: the third

directional derivative of c in the direction of (1,−1) is negative: cxxx − cyyy + 3cxyy −

3xxy ≤ 0.

Note that our symmetry assumption is obviously satisfied by any cost function of the
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form

c (x,y) = d (x) + d (y) ,

where d : [0,1]→R∪∞ is some strictly convex function. For any figures, we will use the

following function:

c (x,y) =x logx+ (1− x) log(1− x) + y logy + (1− y) log(1− y)

− 2(µ logµ+ (1−µ) log(1−µ))
. (Â)

We also specify that the consumer’s utility is additively separable in her value for the

good she purchases, its price, and her cost of acquiring information: if she purchases a

product with expected value x at price p and at posterior (x,y), her utility is x−p−c (x,y).

We assume that the consumer has a negligible (or nonexistent) outside option, and so she

will always purchase from one of the firms. For simplicity, we normalize the marginal

costs of production for the two firms to 0.

The timing of the game is straightforward:

(i) Private Learning: The consumer acquires information about the two products. Nei-

ther firm observes this learning.

(ii) Simultaneous Price Setting: The firms simultaneously post prices.

(iii) Purchase Decision Given posterior value (x,y) and prices (p1,p2), the consumer

purchases from Firm 1 (2) if x − p1 > (<) y − p2 and breaks ties fairly if she is indif-

ferent.

In the first (information acquisition) stage, the consumer solves

max
F∈F

∫
(u − c)dF,

where u : [0,1]2→R is the consumer’s reduced form utility from posterior (x,y).

2.1 Discussion of the Setup

Let us briefly discuss, explain a few of our assumptions.

Binary Values: We assume that each firm’s product takes just one of two values. When

frictions are large, this is inconsequential: we show in Section 6 that unless κ is too
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small, there is an analogous equilibrium to the one we construct in our main

specification when the consumer’s value for the two firms’ products is distributed

according to some density on [0,1]2. It is when information is cheap that we run into

trouble: the learning with three-point support that we identify is no longer optimal for

the consumer. Instead, we conjecture that the consumer now acquires a continuum of

posteriors close to the prior plus possible point masses on more extreme posteriors. This

is merely a conjecture; however, finding an equilibrium in the firm’s pricing game has

proved to be beyond our abilities.

Symmetric Firms: Like the previous assumption, this is for tractability. The equilibrium

of the pricing-only game becomes quite difficult to construct when firms are asymmetric.

Parametric Assumption on the Prior: We make a rather cryptic stipulation that the

positive correlation between the consumer’s values for the two firms’ goods cannot be

too high nor can the prior be too extreme. This is again due to the challenges in

constructing an equilibrium in the pricing game between the firms: it is much easier to

construct an equilibrium in the pricing-only game when the probability of the “tie”

belief (when the consumer’s distribution has symmetric three-point support) is

sufficiently high. Our parametric assumption, thus, guarantees this is true in the

consumer’s optimal learning when frictions are sufficiently low.

Private Learning Before Trading: We assume that the consumer learns before she

observes the firms’ prices and that; moreover, this learning is private.4 In the next

section, we allow for public learning and show that a hold-up problem emerges, which

leads to zero information acquisition by the consumer. In addition, the timing in our

main environment (learning before trading) is realistic in many environments: in

particular, learning about a service provider’s reputation seems especially fitting. Our

timing assumption is also that made by Ravid et al. (2022), which allows us to cleanly

identify the effects of competition.

4Matějka and McKay (2012) study a related scenario in which firms set prices before the consumer

learns.
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Cost Function: The consumer’s cost of acquiring information is a linear functional of

the distribution over posteriors. We assume this posterior-separable form for tractability.

Moreover, we specify that the convex function that is integrated has unbounded slope at

the boundaries of the unit square. This is done to ensure an “interior” solution in the

consumer’s information acquisition problem. Importantly, this specification only makes

our convergence result more difficult to attain: if the slope were bounded our results

would go through with the modification that the results would no longer be limit results

but would hold for sufficiently small positive κ.

3 Observable Learning Benchmark

A natural benchmark is the case in which the firms observe the consumer’s acquired pos-

terior (x,y) ∈ [0,1]2 before posting prices. The first step in characterizing the equilibrium

is to characterize equilibria in the pricing-only game between the two firms for an arbi-

trary vector (x,y).

We define the distributions Υ1 and Υ2 as

Υ1 (p)B 1− ¯
p+λ

p+λ
, on

[
¯
p,∞

)
,

and

Υ2 (p)B 1− ¯
p

p −λ
, on

[
¯
p+λ,∞

)
,

where
¯
p ∈R++ and λB y − x > 0.

Lemma 3.1. For all (x,y), an equilibrium of the pricing-only game exists. If x < y, there exist

a continuum of equilibria, parametrized by
¯
p, in which firm 1 chooses distribution Υ1 and firm

2 chooses Υ2. For any (x,y) with x = y, the unique equilibrium is the Bertrand outcome: both

firms price at marginal cost, p1 = p2 = 0.

It is straightforward to check that the equilibria constructed in Lemma 3.1 are particu-

larly bad for the consumer: her expected payoff at any (x,y) with y , x is strictly negative.

Moreover, it is clear that the consumer’s net payoff at any (x,y), in any equilibrium, must

be as follows:
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Lemma 3.2. In any equilibrium of the pricing-only game with y > x, the expected net payoff

to the consumer is weakly less than x.

Working backward, we now conclude that the consumer will not learn.

Proposition 3.3. If κ > 0, the unique equilibrium with observable learning is for the consumer

to acquire no information: she chooses the degenerate distribution on the prior (µ,µ).

4 Two Pricing Games Between Firms

With a view toward characterizing the symmetric equilibria of the game with flexible

learning by the consumer and price-setting by the firms, we start by examining two games

of pure price setting, holding fixed the consumer’s learning; viz., fixing some exogenous

distribution over consumer valuations for the two firms’ products. In the first pricing

game, the distribution over valuations has symmetric support where the valuation for

one product is favored by some amount λ > 0. In the second pricing game, there is

also support at the prior, where the products are valued equally. In Section 5, we then

show these are the equilibrium valuations after the consumer acquires information in

equilibrium.

4.1 Value Distribution With Symmetric n Point Support

For this subsection, we can easily generalize from two to n firms.5 Suppose the consumer

has a symmetric distribution over valuations for the firms’ products with support on n

points as follows. At each of the n points, her valuation for n− 1 of the firms is the same,

and her valuation for one of the firms is λ > 0 greater than that of the others. That is, after

normalization, with probability 1
n , the consumer’s vector of valuations for the n firms is

(0, . . . ,0,λ,0, . . . ,0). The consumer prefers one firm λ more than all the others, which she

considers equal. This game is closely related to that of Moscarini and Ottaviani (2001)

5This is the only part of the paper in which we study a general oligopolistic environment, rather than

merely duopoly. Our reason for including this generalization is that we think that the limit result of Propo-

sition 4.3 is interesting.
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with two modifications: first, the consumer’s outside option is negligible; and second,

there are n ≥ 2 firms, rather than just two. We also impose symmetry, which we justify

later, when we endogenize the consumer’s learning.

Lemma 4.1. There exist no symmetric equilibria in which firms do not randomize over prices.

Moreover, firms’ distributions over prices cannot have atoms.

Proof. If such an equilibrium exists, a firm’s demand is (locally) perfectly inelastic–if it

raises its price slightly, the consumer will purchase from it with the same probability,

yielding strictly higher profits. ■

As a result, we search for an equilibrium in which firms randomize over prices. Define

the distribution Γ (p) as

Γ (p)B


ΓL (p) , βλ ≤ p ≤ λ (1 + β)

ΓH (p) , λ (1 + β) ≤ p ≤ λ (2 + β)
, (Ã)

where

ΓL (p)B 1−
(
β (1 +λ)
p+λ

)( 1
n−1 )

, and ΓH (p)B 1−
λ (2 + β)− p

(p −λ) (n− 1)

(
p

λ (1 + β)

)( n−2
n−1 )

,

and where β is the unique solution to

I (β)B
(

1 + β

2 + β

)( 1
n−1 )
− 1
β (n− 1)

= 0 .

Proposition 4.2. In the price-setting game of this subsection, the unique symmetric equilib-

rium is for each firm to choose the distribution over prices Γ specified in Expression Ã.

This equilibrium distribution (in Expression Ã) arises as the distribution that generates

unit-elastic demand for the other firm (given the exogenous uncertainty), rendering it, in

turn, willing to randomize. One easy case is that in which there are just two firms. There,

Γ (p) =


ΓLB

p−
√

2λ
λ+p ,

√
2λ ≤ p ≤

(
1 +
√

2
)
λ

ΓH B
(3+
√

2)λ−2p
λ−p ,

(
1 +
√

2
)
λ ≤ p ≤

(
2 +
√

2
)
λ

, (Ê)

since, in this case, β =
√

2.

We can now ask what happens as the number of firms increases:
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Proposition 4.3. As the number of firms, n, increases, β (and so the lower bound for the distri-

bution over prices) decreases strictly. As n ↑ ∞, β ↓ 0 and the limiting equilibrium distribution

is the degenerate mass point on λ.

In the limit, there is a form of monopolistic competition. Each firm sets a price equal to

λ, the difference between a consumer’s valuation for it (when it is the preferred firm) and

the consumer’s “outside option,” 0. The reason is how new firms are added to the space

of valuations. As in Perloff and Salop (1985), all firms are competitors with each other,

and each new product is a new dimension but not necessarily a closer substitute than the

previous product. That is different from a standard Hotelling, spatial competition model.

4.2 Value Distribution With Symmetric n+ 1 Point Support

Now suppose there are just two firms and the consumer has a symmetric distribution

over valuations for the firms’ products with support on 3 points as follows. For 2 points,

her valuation for one of the firms is λ > 0 greater than that of the other firm. At the 3rd

point, the consumer is indifferent between each of the firms.

After normalization, we specify that with probability q ≤ .405 the consumer’s vector

of valuations for the 2 firms is (0,λ) and with probability 1− 2q the consumer’s vector of

valuations is (0,0).

Lemma 4.4. There exist no symmetric equilibria in which firms do not randomize over prices.

Moreover, firms’ distributions over prices cannot have atoms.

Proof. Because the consumer is indifferent between the two firms with strictly positive

probability, a standard under-cutting argument eliminates any symmetric equilibria in

which a firm sets some price with strictly positive probability. ■

Again, we search for an equilibrium in which firms randomize over prices. Define the

distribution Φ (p)

Φ (p)B
(1− q) (p (1− 2q)−λq)

p (1− 2q)2 on
[

q

1− 2q
λ,

q

1− 2q
λ+λ

]
. (Ä)

Proposition 4.5. In the price-setting game of this subsection, it is an equilibrium for each firm

to choose the distribution over prices Φ specified in Expression Ä.
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Figure 1: The Space of Valuations

5 Consumer Learning

Now, we will take as given the price-setting by the firms and search for equilibria in the

grand game. We begin with the following theorem, which argues that as long as there

exist frictions, no matter how small (κ > 0), the consumer only learns along the Compar-

ison Shopping line y = 2µ−x. That is, the consumer’s learning exclusively focuses on the

relative merits of each firm’s product. Defining the set ℓ∗ as

ℓ∗B
{
(x,y) ∈ [0,1]2 : y = 2µ− x

}
,

and saying that the consumer Comparison Shops if her acquired distribution over pos-

teriors is supported on a subset of ℓ∗, our formal result is

Theorem 5.1. If firms choose symmetric, atomless, distributions that admit densities with

support on some closed interval
[
¯
p, p̄

]
, the consumer comparison shops.

The crucial observation behind this theorem is that the consumer’s payoff as a function

of her posterior is strictly concave along the vector orthogonal to the vector (−1,1). Bayes’

plausibility (or a variant thereof) then pins down the comparison shopping line 2µ − x.
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Figure 1 illustrates the space of valuations and the comparison shopping line. Posteriors

in the red (blue) region are those at which the consumer’s valuation for firm 2’s (1’s) good

is highest. The dotted diagonal line is the comparison shopping line when the prior is the

specified point.

5.1 Solving the Information Acquisition Problem

In solving the consumer’s problem, we conjecture its solution and use the corresponding

strategies by the firms in the pricing-only game to generate the consumer’s value function.

Then, we verify that the consumer’s optimal learning is precisely that that we conjectured.

The value function is

V (x,y)BP (x − p1 ≥ y − p2)E (x − p1|x − p1 ≥ y − p2)

+P (y − p2 ≥ x − p1)E (y − p2|y − p2 ≥ x − p1)−κc (x,y) ,

which is continuously differentiable except on ∂ [0,1]2 and is bounded above on the entire

square. Accordingly, by Theorem 1 of Dworczak and Kolotilin (2019), we have weak

duality and the price function solution lies weakly above the consumer’s value in her

information acquisition problem. From there, it is easy to solve the dual problem and

verify that this corresponds to a solution to the primal problem. Alternatively, we can

make use of the symmetry of the information acquisition problem and “split” the prior

probabilities of (1,1) and (0,0) equally between the triangles

∆1B
{
(x,y) ∈ [0,1]2 : 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1− x

}
, (Å)

and

∆2B
{
(x,y) ∈ [0,1]2 : 0 ≤ x ≤ 1 & 1 ≥ y ≥ 1− x

}
; (Æ)

before then solving two standard 3-state persuasion problems (as any simplex is home-

omorphic to the standard simplex), on each of the two triangles. These problems satisfy

the assumptions of Yoder (2021), whose Proposition 2 reveals that the concavification ap-

proach is valid. It remains to verify that the maximum of the two concavifying planes

is convex and lie every above the value function, and that the two planes either are the

same or have y = x as their intersection.
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(a) Expensive Information: κ ≥ κ̄ (b) Moderately Costly Information: κ ∈ [
¯
κ, κ̄]

Figure 2: The two possibilities when information is not cheap (or at most one product is

high, or low, value) with the Â cost.

The solution is then as follows. If information is expensive, if at most one product

is high value, or if at most one product is low value, the price function is just a single

plane; i.e., the two concavifying planes are the same plane. If information is moderately

expensive (and both products can be high value) the price function is the maximum of

two planes that intersect at y = x and lie weakly above the value function on that line.

Finally, if information is cheap, the price function is as in the moderate cost case, with

the additional specification that it is equal to the value function at its minimum, along

the line y = x.

5.2 Equilibrium for Expensive Information orWhenAtMostOne Prod-

uct is High/Low Value

The easiest scenario to analyze is that in which either information is expensive (κ is large),

the consumer’s values for the two firms’ products cannot both be 1, or the consumer’s

values for the two products cannot both be 0. Our main result of this section is that

if frictions are sufficiently large, then regardless of the prior, there is an equilibrium in

which the consumer acquires a binary distribution over posteriors.
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In addition, if at most one product has high value or at most one product has low

value (which includes as a special case the perfect negative correlation scenario), there

is such an equilibrium regardless of the size of the friction. Given this we can charac-

terize the limit result as information frictions vanish. As κ increases, the consumer’s

binary distribution moves out from (µ,µ) symmetrically along the comparison shopping

line. In the limit, these two points hit the boundary of the unit square: the distribu-

tion converges to a binary distribution with support on (max
{
2µ− 1,0

}
,min

{
1,2µ

}
) and

(min
{
1,2µ

}
,max

{
2µ− 1,0

}
). This equilibrium is not efficient: with positive probability

the consumer purchases from a firm whose value (0) is strictly lower than that of the

other firm (1).

This inefficiency result is a consequence of the equilibrium pricing strategies chosen

by the two firms when the consumer’s distribution over posteriors has symmetric binary

support. Note that in the frictionless limit, the consumer either knows with certainty that

one of the firms has high value (when µ ≥ 1
2 ) or that one of the firms has low value (when

µ ≤ 1
2 ). Nevertheless, she still may purchase from the low-(or possibly low)-value firm as

it’s price may be significantly lower.

We say that a consumer Comparison Shops With Uniform 2-Point Support if the

consumer’s acquired distribution over valuations is supported on{(
µ− λ

2
,µ+

λ
2

)
,
(
µ+

λ
2
,µ− λ

2

)}
,

each with probability 1
2 .

Theorem 5.2. If κ is sufficiently high, if at most one product has high value, or if at most one

product has low value, there is an equilibrium in which the consumer comparison shops with

uniform 2-point support and firms randomize over prices according to Expression Ê.

As frictions decrease (κ dwindles) λ grows. Then,

Corollary 5.3. If at most one product has high value or if at most one product has low value,

then as information costs vanish (κ ↓ 0) the limiting equilibrium is not efficient.

Notably, when κ is sufficiently large, λ is strictly increasing in κ: as frictions shrink,

the consumer learns more and more in a mean-preserving spread sense. For all such κ,
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Figure 3: Cheap Information Equilibrium

the price function is a single plane with zero slope. Eventually (as κ continues to shrink),

unless at most one product has high value, κ hits a threshold κ̄. Then, for all κ within

some interval [
¯
κ, κ̄] the consumer’s learning is the same–as are the pricing strategies by

the firms. Here, the price function is the maximum of two planes whose intersection is

the line y = x. Both cases are depicted in Figure 2, where we have substituted in y = 2µ−x

(thanks to Theorem 5.1).

As neither the firms’ behavior nor the consumer’s learning are changing, but infor-

mation is becoming cheaper, the consumer’s welfare is strictly decreasing in κ on this

interval. On the flip side, when κ ≥ κ̄ the opposite relationship exists. Summing things

up:

Proposition 5.4. For intermediate information costs, (κ ∈ [
¯
κ, κ̄]), the consumer’s welfare is

strictly decreasing in the size of the friction. For large information costs, (κ ≥ κ̄), the consumer’s

welfare is strictly increasing in the size of the friction.
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5.3 Equilibrium for Cheap Information

We say that a consumer Comparison ShopsWithOccasional Indifference if her acquired

distribution over valuations has support on 3 points
(
µ− λ

2 ,µ+ λ
2

)
, (µ,µ) and

(
µ+ λ

2 ,µ−
λ
2

)
.

Theorem 5.5. If κ is sufficiently low there is an equilibrium in which the consumer comparison

shops with occasional indifference and firms randomize over prices according to Expression Ä.

Corollary 5.6. As information costs vanish κ ↓ 0 the limiting equilibrium is efficient.

The limiting equilibrium has support on three points

{
(max

{
2µ− 1,0

}
,min

{
1,2µ

}
) , (min

{
1,2µ

}
,max

{
2µ− 1,0

}
) , (µ,µ)

}
.

In contrast to the previous subsection, in the limiting equilibrium, the firms price so that

the consumer purchases from the advantaged firm–if there is an advantaged firm after

her learning–with probability 1. The consumer never purchases from a firm that is worse

than the other ex post. The consumer’s learning in this equilibrium is depicted in Figure

3.

6 Extension to a Prior with a Density

An exact analog of Theorem 5.2 holds when the consumer’s valuations for the two prod-

ucts are symmetrically distributed with nonzero density h on the unit square and the

consumer’s utility is affine in her valuation for the purchased product and additively

separable in her valuation, the price, and the cost of acquiring information (which is

posterior-mean measurable).

That is, suppose each firm is selling a product whose value to the consumer is a ran-

dom variable Zi with full support on [0,1]. Random vector (Z1,Z2) is distributed on

[0,1]2 according to continuous density h (z1, z2), which is symmetric around the diagonal

y = x, i.e., h (z1, z2) = h (z2, z1) for all z1, z2 ∈ [0,1]. µB
∫ 1

0

∫ 1
0
af (a,b)dbda denotes the prior

expected value.

The consumer may acquire any fusion G ∈FH of the prior at cost C (G) = κ
∫
cdG where

we maintain the assumptions from the model section above. Then,
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Proposition 6.1. If κ is sufficiently high, there is an equilibrium in which the consumer com-

parison shops with uniform 2-point support and firms randomize over prices according to Ex-

pression Ê.

Proof. This result is an immediate implication of the fact that in the proof of Theorem

5.2, we show that as κ increases, λ decreases and in the limit goes to 0. For any prior as

specified in this section, there is a threshold λ > 0 such that the comparison shopping with

uniform 2-point support distribution is a fusion of the prior. That we can use the same

price-function approach follows from Dworczak and Kolotilin (2019). Alternatively, as

Kleiner et al. (2023) establish, these distributions are exposed (in their parlance, “strongly

exposed”) points in the set of finitely-supported fusions of the prior. When frictions are

high (κ ≥ κ̄), the associated power diagram is the trivial power diagram consisting of a

single element ([0,1]2). When frictions are moderate (κ ∈ [
¯
κ, κ̄]), the associated power

diagram is convex partitional, with two elements, the triangles ∆1 and ∆2 (Expressions Å

and Æ). ■

The comparative statics from Proposition 5.4 also carry over:

Proposition 6.2. For intermediate information costs, (κ ∈ [
¯
κ, κ̄]), the consumer’s welfare is

strictly decreasing in the size of the friction. For large information costs, (κ ≥ κ̄), the consumer’s

welfare is strictly increasing in the size of the friction.

The intuition is also the same: in the intermediate-friction region, the consumer’s op-

timal learning; and, therefore, the firms’ behavior, stays the same as κ dwindles. The

consumer accrues all of the benefits of cheaper information. When κ is large, the con-

sumer’s learning is affected and so firms raise their prices (on average) to take advantage

of their greater market power. This (negative, for the consumer) force is dominant, and

so cheaper information makes the consumer worse off.

7 Conclusion

This paper develops a model of flexible information acquisition with imperfect compe-

tition between sellers. The buyer can purchase any signal about her valuation privately,
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but signals are costly. Without observing the buyer’s learning strategy or outcome, sellers

set prices and compete for the buyer.

Technical difficulties arise because the equilibrium requires solving a multidimen-

sional information design problem on top of an equilibrium pricing game that involves

a distribution of prices. The value of posterior beliefs is endogenous and depends on the

firms’ pricing, which is random. We prove that the consumer only wants to learn the

relative values, which we call comparison shopping.

Our main result proves that competition between sellers flips the inefficiency result

of Ravid, Roesler, and Szentes (2022). With multiple sellers, as the cost of information

vanishes, the equilibrium outcome is efficient: the consumer always purchases the higher-

value product. We also do comparative statics: when the cost of information is high,

consumer welfare decreases in the cost of information, but when information is cheap,

this relationship flips.

To progress on a difficult multidimensional information design problem, we impose

various assumptions, such as whether the value is either high or low. We show that this

assumption is sometimes unimportant. When learning costs are sufficiently high, there is

an analogous equilibrium for a prior with a density so that this binary-value specification

is innocuous. However, when information costs are low, our equilibrium construction

does not carry over. Such constructions are left for future work.
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A Omitted Proofs and Derivations

A.1 Lemma 3.1 Proof

Recall that we want to show that the family of distributions

Υ1 (p)B 1− ¯
p+λ

p+λ
, on

[
¯
p,∞

)
,

and

Υ2 (p)B 1− ¯
p

p −λ
, on

[
¯
p+λ,∞

)
,

where
¯
p ∈R++ and λB y−x > 0 constitute an equilibrium, for any fixed vector (x,y) (with

0 ≤ x < y ≤ 1).

Proof. The symmetric case is immediate. In the asymmetric case, firm 1’s profit function,

given an equilibrium strategy by firm 2 is

Π (p) =


p, if 0 ≤ p ≤

¯
p

p [1−Υ2 (p+λ)] =
¯
p, if

¯
p ≤ p

,

and so firm 1 is willing to randomize on
[
¯
p,∞

)
. The verification for firm 2 is identical. ■

A.2 Lemma 3.2 Proof

Proof. Consider an arbitrary equilibrium and let v ≥ 0 be the infimum of the support of

firm 1’s distribution over prices. Naturally, then, v+λ must be the infimum of the support

of firm 2’s distribution over prices. Thus, the consumer’s net payoff is weakly less than

max {y − v −λ,x − v} = x − v ≤ x. ■

A.3 Proposition 3.3 Proof

Proof. By Lemma 3.2, the consumer’s payoff at any (x,y) is bounded above by min {x,y},

which is weakly concave. For κ > 0 this function is strictly concave. ■
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A.4 Propositions 4.2 and 4.3 Proofs

Proof. We are looking for a symmetric equilibrium in which each firm chooses an atom-

less distribution over prices Γ (p) with support on
[
¯
p,

¯
p+ 2λ

]
. We guess further that Γ can

be written as Γ (p) = ΓL (p) for p ∈
[
¯
p,

¯
p+λ

]
and Γ (p) = ΓH (p) for p ∈

[
¯
p+λ,

¯
p+ 2λ

]
. The

profit for a firm is

Π (p) =
p

n

[
(n− 1)(1− Γ (p))n−2 (1− Γ (p+λ)) +

(
1− Γ (p −λ)n−1

)]
,

or

Π (p) =


p
n

[
(n− 1)(1− ΓL (p))n−2 (1− ΓH (p+λ)) + 1

]
,

¯
p ≤ p ≤

¯
p+λ

p
n (1− ΓL (p −λ))n−1 ,

¯
p+λ ≤ p ≤

¯
p+ 2λ

.

For any on-path p a firm’s payoff must equal some constant k
n . Thus, for all p ∈ [p̃, p̄], we

have
p

n
(1− ΓL (p −λ))n−1 =

k
n

,

which we can rearrange to get

ΓL (p) = 1−
(

k
p+λ

)( 1
n−1 )

.

Since ΓL

(
¯
p
)

= 0, we must have k =
¯
p+λ.

Next, for all p ∈
[
¯
p, p̃

]
, we must have (substituting in for ΓL and k)

¯
p+λ

n
=
p

n

(n− 1)
(

¯
p+λ

p+λ

)( n−2
n−1 )

(1− ΓH (p+λ)) + 1

 ,

Some rearranging yields

ΓH (p) = 1− ¯
p+ 2λ− p

(p −λ) (n− 1)

(
p

¯
p+λ

)( n−2
n−1 )

Furthermore, ΓL
(
¯
p+λ

)
= ΓH

(
¯
p+λ

)
or

λ(
¯
p
)
(n− 1)

=
(

¯
p+λ

¯
p+ 2λ

)( 1
n−1 )

,
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which pins down
¯
p. Let us guess that

¯
p = βλ for some β > 0. This implies

I (β)B
(

1 + β

2 + β

)( 1
n−1 )
− 1
β (n− 1)

= 0 .

I is strictly increasing in β and is strictly negative for all β sufficiently small and strictly

positive for all β sufficiently large. Thus, our guess is correct. I has a unique root, which

is strictly decreasing in n. Accordingly,
¯
p is strictly decreasing in n and as n ↑ ∞,

¯
p ↓

0. Moreover, as n ↑ ∞, ΓL
(
¯
p+λ

)
↓ 0. Moreover, ΓH becomes steeper and steeper as n

increases. Thus, Γ → δλ.

Finally, we need to verify that firms do not want to choose a price outside of the con-

jectured region. If a firm chooses a price p ∈
[
¯
p −λ,

¯
p
]
, its payoff is

p

n
[(n− 1)(1− ΓL (p+λ)) + 1] =

p

n

(n− 1)
(

¯
p+λ

p+ 2λ

)( 1
n−1 )

+ 1

 .

The derivative of this with respect to p is

((n− 2)p+ 2λ (n− 1))
(

¯
p+λ
p+2λ

)( 1
n−1 )

p+ 2λ
+ 1 > 0 ,

whence we conclude a firm does not want to deviate to a price in this region (we have

implicitly assumed that
¯
p ≥ λ, but this is fine since a firm obviously does not want to

deviate to a negative price). Evidently, if a firm chooses any price p ≤
¯
p − λ its payoff

is just p, which is obviously strictly increasing in p and hence equals
¯
p + λ, which we

just established is not an improvement for the firm. The last case is that in which a firm

chooses a price p ∈
[
¯
p+ 2λ,

¯
p+ 3λ

]
. In that case, a firm’s profit is

p

n
(1− ΓH (p −λ))n−1 =

p

n

(
¯
p+ 3λ− p

(p − 2λ) (n− 1)

)n−1 (
p −λ

¯
p+λ

)(n−2)

,

which is strictly decreasing in p.

The uniqueness argument is analogous to that argued for the atomless equilibrium of

Proposition 3 in Moscarini and Ottaviani (2001). ■
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A.5 Proposition 4.5 Proof

Proof. If one firm, firm 2, say, chooses Φ , firm 1’s profit as a function of p is (1− q) q
1−2qλ,

a constant, for all p ∈
[

q
1−2qλ,

q
1−2qλ+λ

]
. For all p ∈

[
q

1−2qλ+λ, q
1−2qλ+ 2λ

]
, firm 1’s profit

is

pq (1−Φ (p −λ)) ,

which is strictly decreasing in p. For all p ≥ q
1−2qλ+ 2λ firm 1’s profit is 0. Finally, for all

p ∈
[
0, q

1−2qλ+λ
]
, firm 1’s profit is p (1− qΦ (p+λ)). For all

q ≤

3
√

9
√

93−47
3√2

− 11 3√2
3
√

9
√

93−47
+ 5

9
≈ .406,

this function is strictly increasing on this interval. ■

A.6 Theorem 5.1 Proof

Proof. By symmetry we restrict attention WLOG to the case y ≥ x. We assume that the

firms each choose the distributions over prices F with support on
[
¯
p, p̄

]
. Defining λB p̄−

¯
p,

the consumer’s payoff from posterior (x,y), is

V (x,y) =


y −E [p]−κc (x,y) , y ≥ x+λ

y −E [p] +U (z)−κc (x,y) , x+λ ≥ y ≥ x
, (Ç)

where zB y − x and

E [p] =
∫

¯
p+λ

¯
p

pdF (p) ,

and

U (z)B
∫

¯
p+λ

¯
p+z

(p − z)F (p − z)dF (p)−
∫

¯
p+λ−z

¯
p

p (1−F (p+ z))dF (p) .

Directly,

Vxx (x,y) =


−κcxx (x,y) ,∫

¯
p+λ

¯
p+z

f (p − z)dF (p)−κcxx (x,y)
Vyy (x,y) =


−κcyy (x,y) ,∫

¯
p+λ

¯
p+z

f (p − z)dF (p)−κcyy (x,y)
,
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and

Vxy = −
∫

¯
p+λ

¯
p+z

f (p − z)dF (p)−κcxy (x,y) .

The directional second derivative in the direction of (1,1) is −κcxx (x,y) − κcyy (x,y) −

2κcxy (x,y) < 0, by the strict convexity of c. As the price function on the triangle ∆1 (Å) is

a plane the support of the learning must be on the line y = 2µ−x and so we conclude that

the consumer only learns along the line y = 2µ− x. ■

A.7 Theorem 5.2 Proof

Proof. For convenience, define
¯
p B

√
2λ, p̃ B

¯
p + λ, and p̄ B

¯
p + 2λ. The consumer’s

payoff as a function of the realized posterior belief (x,y) is (restricting attention to y ≥ x

by symmetry)

V (x,y) =


y −E [p]−κc (x,y) , y ≥ x+ 2λ

y −E [p] + T1 (z)−κc (x,y) , x+ 2λ ≥ y ≥ x+λ

y −E [p] + T2 (z)−κc (x,y) , x+λ ≥ y ≥ x

, (È)

where zB y − x and

E [p] =
∫ p̃

¯
p
pdΓL (p) +

∫ p̄

p̃
pdΓL (p) =

((√
2 + 1

)
log

(√
2 + 1

)
+
√

2− 1
)
λ ,

T1 (z)B
∫ p̄−z

¯
p

(1− ΓH (p+ z))ΓL (p)dp ,

and

T2 (z)B
∫ p̄−z

p̃
(1− ΓH (p+ z))ΓH (p)dp+

∫ p̃

p̃−z
(1− ΓH (p+ z))ΓL (p)dp+

∫ p̃−z

¯
p

(1− ΓL (p+ z))ΓL (p)dp .

From Theorem 5.1, we may restrict attention to learning along the line y = 2µ−x. The

directional derivative along vector (1,−1), evaluated at all points of the form (x,2µ− x), is

D (x) =


−κcx (x,2µ− x) +κcy (x,2µ− x)− 1, x ≤ µ−λ

2P1 (2µ− 2x)−κcx (x,2µ− x) +κcy (x,2µ− x)− 1, µ−λ ≤ x ≤ µ− λ
2

2P2 (2µ− 2x)−κcx (x,2µ− x) +κcy (x,2µ− x)− 1, µ− λ
2 ≤ x ≤ µ

, (É)
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where

P1 (z)B
∫ p̄−z

¯
p

γH (p+ z)ΓL (p)dp ,

and

P2 (z)B
∫ p̄−z

p̃
γH (p+ z)ΓH (p)dp+

∫ p̃

p̃−z
γH (p+ z)ΓL (p)dp+

∫ p̃−z

¯
p

γL (p+ z)ΓL (p)dp .

Direct substitution yields D (µ) = 0. Moreover, by the symmetry and convexity of c,

and since c (µ,µ) = 0, for x ≤ µ, cy (x,2µ− x)− cx (x,2µ− x) ≥ 0 with equality at x = µ.

When κ is large or when ω is sufficiently large, we need D
(
µ− λ

2

)
= D

(
µ+ λ

2

)
= 0, i.e.,

τ (κ,λ)B 2P1 (λ)−κcx
(
µ− λ

2
,µ+

λ
2

)
+κcy

(
µ− λ

2
,µ+

λ
2

)
− 1 = 0. (À)

Note that

P1 (λ) =
∫ p̃

¯
p
γH (p+λ)ΓL (p)dp = −

(
2

5
2 + 6

)
log

(√
2 + 2

)
−
(
2

7
2 + 12

)
log

(√
2 + 1

)
+
(
2

3
2 + 3

)
log(2) + 2

2
,

which is evidently independent of the parameters and is approximately 1
10 . Directly,

τ ′ (κ) > 0 and

τ ′ (λ) =
κ
2

[
cxx

(
µ− λ

2
,µ+

λ
2

)
− 2cxy

(
µ− λ

2
,µ+

λ
2

)
+ cyy

(
µ− λ

2
,µ+

λ
2

)]
> 0.

By the implicit function theorem λ′ (κ) < 0. Moreover, limλ→min{2µ,2(1−µ)} τ = ∞ and

τ (κ,0) < 0. Accordingly, there is a unique solution λ∗ = λ (κ) to this equation, which

is strictly decreasing in κ. Moreover, limκ↑∞λ∗ (κ) = 0 and limκ↓0λ
∗ (κ) = 2min

{
µ,1−µ

}
.

We also need to check the following:

Claim A.1. D (x) ≤ 0 for all x ∈ [µ−λ∗,µ]; and V
(
µ− λ

2 ,µ+ λ
2

)
≥ V (µ,µ).

Proof. Directly, we differentiate the function D (from Expression É) with respect to x.

This yields

D ′ (x) = −κcxx (x,2µ− x)−κcyy (x,2µ− x) + 2κcxy (x,2µ− x)︸                                                             ︷︷                                                             ︸
Cκρ(x)<0

+τ (x) ,
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where

τ (x) =


0, x ≤ µ−λ

4R (2µ− x) , µ−λ ≤ x ≤ µ− λ
2

4M (2µ− x) , µ− λ
2 ≤ x ≤ µ

,

where

R (z)B
∫ p̄−z

¯
p

γH (p+ z)γL (p)dp ,

and

M (z)B
∫ p̄−z

p̃
γH (p+ z)γH (p)dp+

∫ p̃

p̃−z
γH (p+ z)γL (p)dp+

∫ p̃−z

¯
p

γL (p+ z)γL (p)dp .

It is straightforward to check that τ (x) ≥ 0 (strictly if x > µ − λ) and that it is strictly

increasing in x (for all x > µ − λ). Moreover, ρ′ (x) = cyyy − cxxx + 3cxxy − 3cyyx ≤ 0, by as-

sumption. Accordingly, the second derivative has at most one sign change, from negative

to positive. Given the zero slope condition at x = µ− λ∗
2 , this establishes the claim. ■

For this distribution to be feasible (a fusion of the prior) we need λ∗
2 ≤ω. Define κ̄ ≥ 0

to be the value of κ such that λ∗ = 2ω. Observe that κ̄ = 0 if and only if ω = max
{
1−µ,µ

}
,

which are the special cases in which at most one product is low value or at most one

product is high value, respectively. Directly, D (µ−ω) is strictly increasing in κ.

Claim A.2. There exists an interval of κs, [
¯
κ, κ̄], where

¯
κ ∈ [0, κ̄] for which the equilibrium

λ = 2ω.

Proof. Directly, ∂
∂κD (x) > 0. By construction, when κ = κ̄, the equilibrium λ∗ = 2ω. More-

over, as we noted in Claim A.1, V
(
µ− λ

2 ,µ+ λ
2

)
≥ V (µ,µ). If this is an equality then

¯
κ = κ̄.

If this inequality is strict then, by the intermediate value theorem, there is an interval of

κs ([
¯
κ, κ̄]) for which line tangent to V (x −ω,x+ω) lies above V (x,2µ− x) at µ. ■

■
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A.8 Proposition 5.4

Proof. Thanks to the discussion in the text, we need only consider the case κ ≥ κ̄. In this

case, the consumer’s payoff at equilibrium is

µ+
λ
2
−E [p] +

∫ p̃

¯
p

(1− ΓH (p+λ))ΓL (p)dp

︸                                            ︷︷                                            ︸
S(λ)

−κc
(
µ− λ

2
,µ+

λ
2

)
.

The derivative of this with respect to λ is S ′ (λ) − 1
2κ

(
cy

(
µ− λ

2 ,µ+ λ
2

)
− cx

(
µ− λ

2 ,µ+ λ
2

))
.

However, by the Optimality Equation À, cy
(
µ− λ

2 ,µ+ λ
2

)
− cx

(
µ− λ

2 ,µ+ λ
2

)
= 2P1 (λ) − 1.

Summing everything up and simplifying, we obtain −1−
√

2 < 0. ■

A.9 Theorem 5.5 and Corollary 5.6 Proofs

Proof. For convenience, define
¯
p B q

1−2qλ. The consumer’s payoff as a function of the

realized posterior belief x is (restricting attention to y ≥ x by symmetry)

V (x,y) =


y −E [p]−κc (x,y) , y ≥ x+λ

y −E [p] +U (z)−κc (x,y) , x+λ ≥ y ≥ x
,

where zB y − x and

E [p] =
∫

¯
p+λ

¯
p

pdΦ (p) ,

and

U (z)B
∫

¯
p+λ

¯
p+z

(p − z)Φ (p − z)dΦ (p)−
∫

¯
p+λ−z

¯
p

p (1−Φ (p+ z))dΦ (p) .

For this to be an equilibrium, we need for there to be a line αx + β lying everywhere

above V (x,2µ− x) on 0 ≤ x ≤ µ, and intersecting V (x,2µ− x) at µ − λ
2 and µ. Removing

E [p] since it is a constant, we compute

V (µ,µ) = µ−
λ (1− q)q

(
log

(
q

1−q

)
− 4q+ 2

)
(1− 2q)3 .

Moreover, α = κcy
(
µ− λ

2 ,µ+ λ
2

)
−κcx

(
µ− λ

2 ,µ+ λ
2

)
− 1.
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We need(
κcy

(
µ− λ

2
,µ+

λ
2

)
−κcx

(
µ− λ

2
,µ+

λ
2

)
− 1

)(
µ− λ

2

)
+ β = µ+

λ
2
−κc

(
µ− λ

2
,µ+

λ
2

)
,

or

β = 2µ−κc
(
µ− λ

2
,µ+

λ
2

)
−
(
κcy

(
µ− λ

2
,µ+

λ
2

)
−κcx

(
µ− λ

2
,µ+

λ
2

))(
µ− λ

2

)
.

We also need(
κcy

(
µ− λ

2
,µ+

λ
2

)
−κcx

(
µ− λ

2
,µ+

λ
2

)
− 1

)
µ+ β = µ−

λ (1− q)q
(
log

(
q

1−q

)
− 4q+ 2

)
(1− 2q)3 ,

or

β = 2µ−
λ (1− q)q

(
log

(
q

1−q

)
− 4q+ 2

)
(1− 2q)3 −

(
κcy

(
µ− λ

2
,µ+

λ
2

)
−κcx

(
µ− λ

2
,µ+

λ
2

))
µ.

Equating the βs, we get

ω
(1− q)

(
log

(
q

1−q

)
− 4q+ 2

)
(1− 2q)3︸                           ︷︷                           ︸
Ct(λ)

+κ [λd′ (λ)− d (λ)]︸             ︷︷             ︸
v(λ)

= 0, (Á)

where

d (λ)B c
(
µ− λ

2
,µ+

λ
2

)
,

and where we used the fact that t ≡ t (λ) (as q = ω
λ ).

Furthermore, note that we must have 2ω ≤ λ ≤ 2max
{
µ,1−µ

}
. Directly, t′ (λ) < 0 and

t (λ) < 0 for all λ ∈ [2ω,2max
{
µ,1−µ

}
], and limλ↓2ω t (λ) = 0. Moreover, by the strict

convexity of c, v (λ) > 0. Likewise, v′ (λ) = λd′′ (λ) > 0, and limλ↑2max{µ,1−µ} v
′ (λ) = ∞.

Continuing along these lines, it is easy to compute that t′ (λ) is bounded for all λ ∈

(2ω,2max
{
µ,1−µ

}
]. Finally, it is straightforward to check that limλ↑2max{µ,1−µ} v (λ) =∞.

From the observations in the previous paragraph, we conclude the following:

(i) If κ is sufficiently small, then a unique solution λ∗ (κ) to Equation Á exists.

(ii) In this unique solution, λ∗ is strictly decreasing in κ.

(iii) As κ ↓ 0, λ∗ ↑ 2max
{
µ,1−µ

}
.

This last item is the stated corollary (5.6). ■
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