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Abstract. How do cost shocks pass through to prices in markets with price dis-

persion? Pass-through analysis typically assumes a single equilibrium price, but

empirical studies consistently document substantial price variation, even for ho-

mogeneous products. This paper develops a tractable framework that decomposes

the pass-through problem into two distinct tiers. The first is a competition layer

where consumers’ consideration sets determine equilibrium distributions of nor-

malized margins. The second is a curvature layer where demand elasticity deter-

mines how these margins translate into prices and pass-through rates. The key

theoretical innovation is showing that the strategic pricing game with arbitrary

downward-sloping demand is order-isomorphic to a baseline unit-demand game

once reformulated in terms of normalized effective margins. This decomposition

yields closed-form pass-through formulas, robust bounds across demand specifi-

cations, and clear comparative statics linking market structure to incidence.

1. Introduction

Empirical studies consistently document substantial price variation for homo-

geneous products. The theoretical toolkit for analyzing pass-through presumes a

unique price to differentiate. This paper develops a tractable framework for pass-

through analysis when equilibrium features a price distribution rather than a price

point.

The core contribution is a decomposition. We show that pass-through in dispersed-

price markets separates into two tiers. The first is a competition layer, where market

structure determines an equilibrium distribution of normalized effective margins.

The second is a curvature layer, where demand elasticity determines how these
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margins translate into prices and pass-through rates. Our key result, Theorem 3.3,

establishes that the equilibrium margin distribution depends only on market

structure, not on demand curvature or cost levels. Demand and costs matter

only for the mechanical translation from margins to prices.

This decomposition has three immediate payoffs for applied work. First, it yields

closed-form pass-through formulas at each quantile of the price distribution, com-

putable without resolving the full equilibrium for each cost level. Second, the

invariance of margin distributions to costs means pass-through follows from dif-

ferentiating a function, rather than from comparative statics on a complex game.

Third, the separation identifies exactly when demand specification matters. The

competition layer is demand-free, while the curvature layer requires knowing the

demand function.

The paper contributes to two literatures that have developed largely in parallel.

The literature on pass-through, following Weyl and Fabinger (2013), derives sim-

ple formulas linking pass-through to demand curvature but requires a single equi-

librium price, either under monopoly or symmetric oligopoly. We show how their

curvature insights extend to equilibrium price distributions. The same demand

primitives matter, but they interact with a distribution of markups rather than a

single markup. The modern industrial organization literature on price dispersion,

building on Varian (1980) and Burdett and Judd (1983), characterizes when and

why prices are dispersed, but has not addressed how cost shocks transmit through

these distributions. We provide a general framework of pass-through characteri-

zation for dispersed-price equilibria.

We adopt the consideration-set framework of Armstrong and Vickers (2022)

as our model of price dispersion. Consumers observe prices only from firms in

their consideration set and purchase from the cheapest option. This generates

mixed-strategy equilibria where firms randomize over prices. The consideration
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structure (who considers whom) is reduced-form and captures many phenomena–

search costs, informational frictions, platform algorithms, behavioral inattention,

etc. Our results apply regardless of the underlying source.

The isomorphism works by reformulating the pricing game in terms of normal-

ized effective margins rather than prices. The effective margin captures profit per

customer served, normalized to lie in the unit interval. Under a natural mono-

tonicity condition, there is a one-to-one mapping between prices and margins.

The key observation is that equilibrium behavior depends on the trade-off between

margin and market share, and this trade-off is determined entirely by the consid-

eration structure. Demand curvature and costs affect only the translation from

margins back to prices. This is why the equilibrium margin distribution is invari-

ant. When costs change, the entire price distribution shifts, but the underlying

distribution of competitive positions remains fixed.

To illustrate the decomposition’s power, consider how it simplifies comparative

statics. A standard question asks how pass-through varies with market structure.

In our framework, this question separates cleanly. Changes in market structure

shift the margin distribution; we characterize exactly how in terms of the consid-

eration structure. Changes in demand curvature alter the translation from mar-

gins to prices; we provide closed-form expressions for common demand families.

These effects combine in a tractable way, enabling sharp predictions about which

structural changes matter most for incidence.

The framework yields several results that would be difficult to obtain without

the decomposition. We derive pass-through formulas at each quantile of the price

distribution, revealing heterogeneity invisible to single-price analysis. Consumers

buying at low prices face different pass-through than those buying at high prices.

Under unit demand, transaction-weighted pass-through (what matters for wel-

fare) reduces to a sufficient statistic depending only on the consideration-set struc-

ture. One can then estimate incidence from consideration data (platform clicks,

surveys, geographic proximity) rather than from a demand system, building on
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methods surveyed in Honka et al. (2019). The identification problem shifts from

”how does quantity respond to price?” to ”who considers whom?,” which is often

more tractable. We derive bounds on pass-through that hold across all demand

specifications, useful for policy analysis when demand is only partially known.

And we clarify when aggregate pass-through can exceed unity, showing that the

same market structure yields qualitatively different incidence patterns depending

on demand curvature.

We develop these results for arbitrary consideration structures before special-

izing to cases that admit closed-form solutions. With symmetric firms, equilib-

rium has a simple characterization in terms of the probability generating func-

tion for competitor counts. With asymmetric firms under independent consider-

ation, we derive piecewise closed-form equilibria exhibiting a hierarchical struc-

ture. Higher-reach firms price higher at each quantile and, if demand is not too

convex, have lower pass-through at each quantile. These closed-form results make

the framework applicable to structural estimation and policy counterfactuals.

1.1. Related Literature. This paper connects two distinct literatures: the indus-

trial organization literature on price dispersion and limited consideration and the

literature on tax incidence and pass-through.

Price dispersion in homogeneous goods markets traces to Varian (1980) and

Burdett and Judd (1983), who show that when consumers observe different sub-

sets of prices, firms randomize in equilibrium. Recent work extends these foun-

dations in several directions: Guthmann (2024, 2025); Guthmann and Albrecht

(2025) analyze dynamic settings, Elliott et al. (2021) study platform design, Berge-

mann et al. (2021) and Albrecht (2020) derive robust equilibrium bounds that hold

across information structures, while Armstrong (2017), Rhodes and Zhou (2019),

and Rhodes et al. (2021) explore richer consideration structures including ordered

search and multiproduct settings.



PASS-THROUGH WITH PRICE DISPERSION 5

Most closely connected is Armstrong and Vickers (2022), who develop a general

framework for competition with arbitrary consideration patterns. We build di-

rectly on their framework, adopting their consideration set and equilibrium con-

cepts. But where they focus on welfare and market structure with unit demand,

we characterize pass-through with general downward-sloping demand. Our main

theorem, Theorem 3.3, shows that their unit-demand results extend to general de-

mand functions once we work with normalized effective margins. More broadly,

we extend this literature in two directions: we derive pass-through formulas that

apply to any consideration structure, and we show that equilibrium margin dis-

tributions depend only on consideration patterns, not on demand curvature, via a

separation principle that simplifies comparative statics dramatically.

A growing empirical literature estimates consideration sets and documents their

importance for demand analysis. Different subfields use different terminology:

”awareness sets” when the friction is ignorance (Honka et al., 2017), ”choice sets”

when it is institutional (Gaynor et al., 2016), and ”attention” when it is cognitive

(Abaluck and Adams-Prassl, 2021). The core insight is the same: ignoring con-

sideration sets biases elasticity estimates and distorts counterfactual predictions.

Goeree (2008) shows that full-information models underestimate PC markups by

a factor of four. The gap arises because high-share firms have larger considera-

tion sets, not just better products. Abaluck and Adams-Prassl (2021) demonstrate

that consideration-set frictions explain why Medicare defaults are sticky–a pattern

full-information models cannot match.

The pass-through literature, following Weyl and Fabinger (2013), provides a

unified framework showing that pass-through depends on the curvature of de-

mand relative to its slope. Their approach has been extended to vertical markets

(Adachi and Ebina, 2014), welfare analysis (Adachi and Fabinger, 2022), and plat-

form fees (Weyl, 2010). Empirical work documents heterogeneity across markets

(Marion and Muehlegger, 2011; Stolper, 2017; Miller et al., 2017). We extend the

Weyl-Fabinger framework to markets with equilibrium price dispersion. The same
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demand-curvature fundamentals matter, but they interact with a distribution of

markups rather than a single markup. Our separation into competition and curva-

ture layers parallels their decomposition into conduct and curvature, with consid-

eration structure playing the role of conduct, but microfounded through consumer

information and search rather than through a reduced-form parameter.

Three recent papers have begun bridging these literatures by analyzing pass-

through when prices are dispersed. Garrod et al. (2024) provide a theoretical

analysis of the Varian model with general demand, showing that whether cap-

tive or non-captive consumers bear more of a cost increase depends on whether

demand is log-concave or log-convex. Montag et al. (2023) develop a Varian-style

model with informed and uninformed consumers and test it using tax changes in

German and French fuel markets. They find that pass-through is higher for the

minimum price paid by informed consumers than for the average price paid by

uninformed consumers.

Fischer et al. (2024) estimate a structural search model using German fuel data,

finding that informed consumers face higher effective pass-through rates and that

excise tax reductions would benefit consumers more than equivalent VAT cuts.

The first two papers work with binary consumer types–captive versus non-captive,

or informed versus uninformed–while Fischer et al. (2024) estimate a distribution

of search intensity. We build on their insights using the Armstrong-Vickers frame-

work, which allows arbitrary consideration patterns, and we characterize pass-

through at each quantile of the price distribution rather than by consumer type.

Beyond specific applications, our approach to transaction-weighting in mixed-

strategy equilibria provides a general framework for computing consumer-relevant

statistics when firms use mixed strategies. This paper also connects to the litera-

ture on order statistics and quantile methods in economics (Koenker, 2005; Cher-

nozhukov et al., 2013). By characterizing pass-through at each quantile of the

price distribution, we provide a complete picture of how costs transmit through

the market, which is information that single-price models cannot capture.
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2. Model

There are n firms, indexed by N = {1, . . . ,n}. The demand side consists of a unit

mass of consumers, partitioned by their consideration sets.1

Definition 1. A consideration structure is a probability distribution {αS}S⊆N where

αS ≥ 0 represents the mass of consumers who consider exactly the set S of firms,

with
∑

S⊆N αS = 1.2

Each consumer observes prices only from firms in her consideration set and pur-

chases from the lowest-priced firm, provided that price does not exceed 1.3

Example 2.1 (Random Search). If each consumer samples each firm independently

with probability λ ∈ (0,1), then αS = λ|S |(1 −λ)n−|S |. This yields the binomial con-

sideration structure.

Example 2.2 (Spatial Markets). Consider firms located on a circle. If consumers

observe only their k nearest neighbors:

αS =


1/n if S consists of k consecutive firms

0 otherwise

For analytical convenience, we define:

Definition 2. Firm i’s reach is σi ≡
∑

S∋i αS , the mass of consumers who consider i.

Firm i’s captive share is α{i}, the mass who consider only i. Firm i’s captive-to-reach

ratio is ρi ≡ α{i}/σi ∈ [0,1].

Each consumer who purchases at price p demands quantity x(p) where:

1Other studies, such as Perla et al. (2023), Guthmann (2024), McAfee (1994), Albrecht (2020),
Guthmann and Albrecht (2025), and Armstrong and Vickers (2022), use terms such as ”awareness,”
”availability rate,” ”choice set,” ”loyal customers,” and ”consideration set” to indicate the subset of
firms that buyers have access to.
2We allow α∅ ≥ 0, representing consumers who consider no firms.
3We interpret 1 as an upper bound on feasible prices rather than a choke price–consumers have
positive demand even at p = 1 (see Assumption 2.3).
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Assumption 2.3. The function x : [0,1] → R+ is continuous, weakly decreasing,

and continuously differentiable, with x(1) > 0.

Firms share a common marginal cost c ∈ [0,1). The cost may represent produc-

tion costs, taxes, or input prices whose changes we wish to study. Firms simulta-

neously choose price distributions. We break ties uniformly: whenever multiple

firms offer the same lowest price within a consumer’s consideration set, we as-

sume that the consumer randomizes uniformly across the tied lowest-priced firms.

Formally, for any nonempty consideration set S ⊆ N and realized price profile

p ∈ [c,1]N , define the set of minimizers

MS(p)B argmin
j∈S

pj .

A consumer with consideration set S purchases from firm i ∈ S with probability

1 {i ∈MS(p)}
|MS(p)|

.

Consequently, given rival mixed strategies F−i , the demand faced by firm i when it

posts price p is, therefore,

(Demand) qi(p)B
∑
S∋i

αS ·E
[

1 {i ∈MS (p,p−i)}
|MS (p,p−i)|

]
.

If the mixed-strategy cumulative distribution functions (CDFs) are atomless on

the interior of their support (which is typical in price competition with continuous

payoffs on each side of any price), so ties occur with probability zero, the demand

formula simplifies to

(Demand∗) qi(p) =
∑
S∋i

αS

∏
j∈S\{i}

(1−Fj(p)),

where we follow the convention that the empty product (when S = {i}) equals 1.

(Demand∗) is the mass of consumers who consider i and find i strictly cheaper than

all rivals in their consideration set.
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Now let

(Profit) Πi(p;c) = (p − c)x(p)qi(p)

denote firm i’s profit from posting price p. A profile of price CDFs (Fi)i∈N on [c,1]

constitutes an equilibrium if for each firm i two conditions hold:

(1) Each firm is indifferent over all prices on the support of its distributions:

for all prices p in the support of Fi , Πi(p;c) = πi(c).

(2) No firm has a profitable deviation: for all prices p ∈ [c,1] outside the sup-

port of Fi , Πi(p;c) ≤ πi(c).

We also make the following monotonicity assumption on the effective margin

per served consumer:

Assumption 2.4. The effective margin per served consumer, function (p − c)x(p), is

strictly increasing on [c,1] for all p ∈ [c,1].

This assumption ensures that higher prices correspond to higher effective mar-

gins, maintaining the trade-off between margin and market share. The assumption

holds whenever the effective margin (p−c)x(p) is maximized at the boundary p = 1

rather than at an interior price. To ensure invertibility, we will always need some

assumption like this. With unit demand, which is common in the search and price

dispersion literature, the assumption holds automatically since (p−c) ·1 is linear in

p. When the effective margin is instead maximized at an interior price p̂(c) < 1, the

assumption fails on [c,1]. For example, with CES demand x(p) = p−η , the effective

margin is maximized at p̂(c) = ηc/(η − 1), so the assumption holds if and only if

c ≥ 1 − 1/η. The isomorphism can be extended to this case by normalizing mar-

gins by m̄(c) ≡ maxp∈[c,1](p − c)x(p) rather than (1 − c)x(1). The competition layer

is unchanged; what changes is the curvature layer, since m̄′(c) = −x(p̂(c)) varies

with c when the maximum is interior. We maintain Assumption 2.4 throughout to

preserve the simpler structure.
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3. The µ-Isomorphism

This section establishes our central theoretical result: the pricing game with

general demand is isomorphic to a unit-demand game after a change of variables.

The key insight is that firms fundamentally care about their effective margin per

customer served–how much profit they extract from each transaction. Once we

normalize these margins appropriately, the strategic considerations become iden-

tical regardless of the underlying demand function.

3.1. Normalized Effective Margins. To understand the isomorphism, we need to

think about what firms actually compete over. When a firm sets price p, it earns

(p − c)x(p) from each customer it serves–this is the effective margin. Different

demand functions x(·) change the mapping from prices to effective margins, but

the underlying strategic trade-off remains the same: higher margins mean higher

profit per customer but lower probability of winning customers.

Definition 3. Given demand x(·) and cost c, the normalized effective margin at price

p is:

(1) µ(p;c) ≡
(p − c)x(p)
(1− c)x(1)

∈ [0,1]

The numerator is firm profit per served consumer. The denominator is the max-

imum feasible profit when pricing at the reservation value. This normalization

maps all possible effective margins to the unit interval [0,1], with µ = 0 corre-

sponding to pricing at cost (zero margin) and µ = 1 corresponding to extracting

maximum profit at the reservation price. Under Assumption 2.4, µ(p;c) is strictly

increasing in p on the equilibrium support, ensuring a one-to-one correspondence

between prices and normalized margins.

Definition 4. The inverse map φ(µ,c) solves:

(2) (φ(µ,c)− c)x(φ(µ,c)) = µ(1− c)x(1)

We record the existence and uniqueness of the inverse map φ:
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Lemma 3.1. Under Assumptions 2.3 and 2.4, for each µ ∈ [0,1] and c ∈ [0,1), there

exists a unique φ(µ,c) ∈ [c,1] satisfying (2).

Proof. Define g(p) ≡ (p − c)x(p)− µ(1− c)x(1) for p ∈ [c,1]. By the continuity of x(·),

the function g is continuous. Moreover,

g(c) = −µ(1− c)x(1) ≤ 0 ≤ (1− c)x(1)(1−µ) = g(1),

so by the intermediate value theorem, there exists p∗ ∈ [c,1] with g(p∗) = 0. Finally,

by Assumption 2.4, g ′(p) = x(p) + (p − c)x′(p) > 0 on the relevant domain, so g is

strictly increasing, yielding uniqueness. ■

3.2. The Main Isomorphism Result. We now state and prove our central theo-

rem. The result shows that once we reformulate the game in terms of normalized

effective margins µ, all the complexity from demand curvature disappears. The

equilibrium depends only on the consideration set structure. Demand curvature

and costs then only matter for translating these margin distributions back into

price distributions.

We first define the transformed game that will be central to our analysis. We

define the margin game as follows

Definition 5. In the margin game, firms simultaneously choose probability distri-

butions over margins µ ∈ [0,1]. When firm i posts margin µ and rivals use CDFs

(F
µ
j )j,i , firm i’s payoff is Π

µ
i (µ) = µ ·qµi (µ), where the demand share q

µ
i (µ) is defined

analogously to (Demand):

q
µ
i (µ) =

∑
S∋i

αS ·E
1

{
i ∈MS (µ,µ−i)

}∣∣∣MS (µ,µ−i)
∣∣∣

 ,
with MS(µ,µ−i) denoting the set of margin-minimizers in S and ties broken uni-

formly. When rival CDFs are atomless at µ, ties occur with probability zero and

the demand share simplifies as in (Demand∗):

q
µ
i (µ) =

∑
S∋i

αS

∏
j∈S\{i}

[
1−Fµ

j (µ)
]
.
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An equilibrium in the margin game exists:

Lemma 3.2. The margin game admits a mixed-strategy Nash equilibrium.

The proof, which verifies the hypotheses of Dasgupta and Maskin (1986, Theo-

rem 5), appears in Appendix A.1.

Theorem 3.3. Consider the pricing game with demand x(·) satisfying Assumptions 2.3

and 2.4 and cost c. Then:

(a) The map Φ defined by F
µ
i = Φ(Fi) is a bijection between equilibria of the pricing

game and equilibria of the margin game.4

(b) The equilibrium µ-distributions depend only on the consideration structure (αS)S⊆N ,

not on x(·).

The proof appears in Appendix A.2. The key insight is that the normalized

effective margin µ(p;c) = (p−c)x(p)/[(1−c)x(1)] provides a bijection between prices

and margins, and payoffs in the pricing game are proportional to payoffs in the

margin game with a common scaling factor (1 − c)x(1), which does not affect best-

response comparisons.

We pause to remark on the role of Assumption 2.4.

Remark 3.4. The invertibility condition that p 7→ (p − c)x(p) is strictly increasing

ensures that the effective margin is strictly increasing in price. Without this, mul-

tiple prices could yield the same margin, breaking the bijection. Economically, the

condition requires that higher prices always generate higher profit per customer

served; viz., firms never face a ”backward-bending” margin curve. This holds for

unit demand (where x(p) ≡ 1) and for most standard demand specifications when

markups are moderate.

The µ-isomorphism helps us in understanding pass-through. It reveals that cost

pass-through in markets with price dispersion can be decomposed into two dis-

tinct layers:

4Thus, the pricing game admits a mixed-strategy equilibrium.
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Corollary 3.5. Cost pass-through analysis separates into two distinct layers. The com-

petition layer solves for equilibrium µ-distributions using only the consideration struc-

ture {αS}, determining how market power is distributed across the price distribution.

The curvature layer maps normalized margins to prices via p = φ(µ,c) using the demand

function x(·) and cost c, determining how a given level of market power translates into

actual prices. Pass-through then follows by differentiating the mapping: τ = φc(µ,c).

The pass-through rate depends on both layers but in a separable way.

This separation dramatically simplifies analysis. Rather than solving different

equilibria for each (c,x(·)) combination, we solve once in µ-space and apply differ-

ent transformations. To see the power of this approach, note that the equilibrium

µ-distribution is invariant to cost changes—when costs rise, the entire price dis-

tribution shifts, but the underlying distribution of market power (captured by µ)

remains fixed. When multiple equilibria exist, this invariance holds for the set,

but the uniqueness results in Section 4 ensure a well-defined equilibrium path for

differentiation. This is why pass-through can be computed as a simple derivative

of the mapping function φ.

3.3. Economic Intuition. The normalized effective margin µ captures the funda-

mental trade-off in price-setting: higher µ means higher profit per customer but

lower probability of winning customers. Think of µ as the firm’s ”aggressiveness”

in extracting surplus–choosing µ is like choosing a position on the competition

spectrum from aggressive (low µ, low margins, high market share) to passive (high

µ, high margins, low market share).

The consideration structure {αS} determines how this trade-off resolves in equi-

librium: markets with more overlapping consideration sets (more competition)

push firms toward lower µ, while markets with many captive customers allow

higher µ. Crucially, the demand curvature x(·) only affects the translation between

these strategic positions and actual prices, not the positions themselves.
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3.4. Application to Merger Analysis. The µ-isomorphism provides a clean de-

composition for merger analysis. Any merger changes the consideration struc-

ture αS , inducing a new equilibrium in the margin game. Since the margin game

is invariant to demand, this step can be computed once without specifying de-

mand. The price effects at each quantile then follow from ∆p(u) = φ(µpost(u), c) −

φ(µpre(u), c). This separates the problem: the competition layer determines how

margins shift, whereas the curvature layer determines how those margin shifts

translate to prices. The first depends only on consideration structure, the second

only on demand.

4. Equilibrium Characterization

Having established the isomorphism, we now characterize equilibrium in two

important cases. These results show how the consideration set structure–the pat-

tern of consumer search and awareness–determines the equilibrium distribution

of market power. We begin with the symmetric case where all firms face identi-

cal competitive environments, then discuss how heterogeneous market positions

affect equilibrium.

4.1. Symmetric Firms. When the consideration structure treats all firms symmet-

rically, for instance, when consumers randomly sample firms or when firms are

arranged symmetrically in geographic or product space–equilibrium takes a par-

ticularly simple form. The key insight is that symmetric competition leads to a

common distribution of market power, though firms still mix over different prices

in equilibrium.

Definition 6. The structure {αS} is symmetric if αS depends only on |S |, not on the

identity of firms in S.

Under symmetry, all firms have identical reach σ (the mass of consumers who

consider them) and captive-to-reach ratio ρ = α{i}/σ (the fraction of their poten-

tial customers who consider no other firms). The ratio ρ is a crucial parameter,
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measuring the degree of market power arising from limited consideration. When

ρ is high, many consumers are captive to individual firms, whereas when ρ is low,

most consumers compare multiple options.

Proposition 4.1. With symmetric consideration structure, the unique symmetric equi-

librium in µ-space has quantile function

µ(u) =
ρ

H(1−u)
,

where H(s) = 1
σ

∑
S∋i αSs

|S |−1 is the probability generating function of |S |−1 conditional

on i ∈ S.

Intuitively, H(s) encodes the competitive environment: it tells us the distribu-

tion of how many rival firms a consumer considers, conditional on considering

firm i. The formula shows that firms mix over higher margins (higher µ) when

they have more captive customers (higher ρ). Perhaps less obviously, margins are

also higher when consumers consider more rivals (lower H). The logic, which

goes back to Rosenthal (1980), is that with more rivals, competing aggressively

for contested consumers becomes less valuable since they are spread across more

firms. Firms respond by shifting their mixing toward higher margins, focusing

on extracting surplus from captive customers rather than competing fiercely for

contested ones.

4.2. Example: Binomial Consideration. To make these concepts concrete, con-

sider a market where each consumer independently considers each firm with prob-

ability λ. This captures settings like online markets where consumers randomly

encounter products, or markets where advertising reaches consumers stochasti-

cally.

Example 4.2 (Random Search Equilibrium). With binomial consideration where

each consumer considers each firm independ90

µ(u) =
ρ

H(1−u)
=

(1−λ)n−1

(λ(1−u) + (1−λ))n−1 =
( 1−λ
1−λu

)n−1
.
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4.3. Asymmetric Duopoly. We now characterize equilibrium when two firms have

different captive shares. This case is tractable and reveals how asymmetric market

positions affect equilibrium price dispersion and pass-through.

Consider n = 2 firms with captive shares α1 ≡ α{1} and α2 ≡ α{2}, shared segment

α12 ≡ α{1,2} (consumers who consider both), and outside option α∅. Define the

captive-to-reach ratios:

ρ1 =
α1

α1 +α12
, ρ2 =

α2

α2 +α12

The captive-to-reach ratio ρi measures the fraction of firm i’s potential customers

who have no alternative. Higher ρi means more market power from captive con-

sumers.

Proposition 4.3. Assume 1 > ρi > 0. Let ρ1 > ρ2. The unique equilibrium in µ-space

has both firms mixing on the common support [µ,1] with lower bound µ = ρ1. The

equilibrium CDFs on µ ∈ [µ,1) are

F
µ
1 (µ) = 1− 1

1− ρ2

(
ρ1

µ
− ρ2

)
and F

µ
2 (µ) = 1−

ρ1

1− ρ1

(
1−µ
µ

)
.

Firm 1 (with higher ρ1) has a mass point at µ = 1 of size ∆1 = 1−Fµ
1 (1) = (ρ1−ρ2)/(1−

ρ2), while firm 2 has no atom (Fµ
2 (1) = 1).

The corresponding asymmetric duopoly quantile functions are

µ1(u) =


ρ1

1−u(1−ρ2) if u ≤ 1−∆1

1 if u > 1−∆1,
and µ2(u) =

ρ1

1−u(1− ρ1)
.

The asymmetric equilibrium reveals how differences in captive shares shape

competitive behavior. The firm with more captives (ρ1 > ρ2) prices at the mo-

nopoly margin µ = 1 with positive probability. The firm with fewer captives earns

rents: it benefits from the ”price umbrella” set by the stronger firm, earning ex-

pected profits strictly above its captive value (π∗2 = ρ1(α2 + α12) > α2). Both firms
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share the same support-lower-bound µ = ρ1, determined by the stronger firm’s de-

sire to exploit its large captive base.

We can also order the duopoly margins. For u ≤ 1 −∆1, the quantile functions

satisfy:

µ1(u) =
ρ1

1−u(1− ρ2)
>

ρ1

1−u(1− ρ1)
= µ2(u).

since ρ1 > ρ2 implies 1−ρ1 < 1−ρ2. Firm 1 (with more captive customers) maintains

higher margins and prices at every quantile.

4.4. Extension to n Asymmetric Firms: Independent Consideration. The duopoly

analysis extends to n asymmetric firms when consideration sets exhibit a particu-

lar structure: independent awareness. Under this assumption, whether a consumer

considers firm i is statistically independent of whether she considers firm j. This

structure, used by Guthmann (2025), yields closed-form equilibrium characteri-

zations for arbitrary n.

Assumption 4.4. Each consumer considers firm j independently with probability

λj ∈ (0,1). The consideration structure is

αS =
∏
j∈S

λj

∏
k<S

(1−λk).

Under independence, firm j’s reach is σj = λj and its captive share is α{j} =

λj
∏

k,j(1−λk). The captive-to-reach ratio becomes:

ρj =
α{j}
σj

=
∏
k,j

(1−λk).

A key property of independence is that firm j’s demand share when posting µ

takes a multiplicatively separable form:

(3) q
µ
j (µ) =

∑
S∋j

αS

∏
i∈S\{j}

(1−Fµ
i (µ)) = λj

∏
i,j

[
1−λiF

µ
i (µ)

]
.

This separability is what enables closed-form solutions. We state and prove it

for completeness.
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Proposition 4.5. Posit Assumption 4.4 and order firms so that λ1 > λ2 ≥ · · · ≥ λn.

Define the common lower bound µ B ρ1 =
∏n

h=2(1 − λh) and define the upper support

bounds by µ̄1 = µ̄2B 1, and for each k ∈ {3, . . . ,n},

µ̄k B

∏k−1
h=2(1−λh)

(1−λk)k−2
∈ (0,1), with the convention µ̄n+1B µ.

Then the unique equilibrium in µ-space has the following structure:

(1) Firm 1 mixes on [µ,1] and has an atom at µ = 1. Firm 2 mixes continuously on

[µ,1] with no atom. Each firm k ≥ 3 mixes continuously on [µ, µ̄k] with µ̄k < 1.

The supports are nested: 1 = µ̄1 = µ̄2 > µ̄3 ≥ · · · ≥ µ̄n > µ.

(2) Each firm j earns equilibrium profit π∗j = λj µ, with π∗1 = λ1µ = α{1}.

(3) For each m ∈ {2, . . . ,n}, define Cm B
∏n

h=m+1(1 − λh) (so Cn = 1 and C2 =∏n
h=3(1 − λh)), and for µ ∈ [µ̄m+1, µ̄m] define the common multiplier Γ (µ) B

1−
(
µ/(µCm)

)1/(m−1)
. Then for each µ ∈ [µ̄m+1, µ̄m],

F
µ
j (µ) =


Γ (µ)/λj , j ≤m,

1, j > m,
and F

µ
j (µ) = 0 for µ < µ.

On the common overlap [µ, µ̄n] (where m = n),5

(4) Γ (µ) = 1−
(
µ/µ

)1/(n−1)
and F

µ
j (µ) =

Γ (µ)
λj

.

For firm j > 1 (no atom), on domain [0,1] mapping to [µ, µ̄j]:

µj(u) = µ ·
[
1−λju

]−(n−1)

We note the following stochastic dominance of margins, namely, that higher-reach

firms price higher at each quantile.

5Firm 1 has a mass point at µ = 1 of size ∆1 = 1− Fµ
1 (1−) = 1−λ2/λ1. All firms j ≥ 2 have no atom

at µ = 1.
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Corollary 4.6. Under independence with λ1 > λ2 ≥ · · · ≥ λn, the margin CDFs satisfy

F
µ
1 (µ) ≤ F

µ
2 (µ) ≤ · · · ≤ F

µ
n (µ) for all µ in the common support. Equivalently, µ1(u) ≥

µ2(u) ≥ · · · ≥ µn(u) for all u ∈ [0,1].

The independent consideration model reveals a clean hierarchical structure.

The key equilibrium object is Γ (µ) = λjF
µ
j (µ), which is common across all firms in

the overlapping support region. Higher-reach firms (λj large) have flatter CDFs:

they spread the same Γ (µ) over a larger mass of aware consumers, so each con-

sumer is less likely to see low prices from them. The firm with highest reach faces

the most competition and must sometimes charge the monopoly margin to earn its

equilibrium profit, thus, the atom at µ = 1.

Firms with lower reach have relatively more captive power and can achieve their

profits at margins below monopoly, so their supports end before µ = 1. The sup-

port lower bound µ =
∏

h,1(1 − λh) = ρ1 depends on the reach of all other firms;

when rivals have high reach, the competitive floor on margins falls. Finally, pass-

through heterogeneity across firms arises purely from their positions in the margin

distribution; firms with higher reach post higher margins at each quantile and, if

demand is not too convex (as for unit or linear demand), have lower pass-through

at each quantile.

Of course, the independent consideration structure is a special case of general

consideration sets. The key simplification is that the demand share (3) factors

multiplicatively, implying that λjF
µ
j (µ) must be equal across active firms on each

support interval. Equation (4) solves this equal-Γ structure explicitly on the lowest

interval where all n firms compete. For general (correlated) consideration struc-

tures, this factorization fails and closed-form solutions are unavailable for n ≥ 3.

Nevertheless, the qualitative properties (common support, stochastic dominance

ordering, atoms for high-reach firms, pass-through ranking) extend to the general

case.
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5. Quantile Pass-Through

We now derive our main pass-through results. The key insight from the µ-

isomorphism is that pass-through rates can be computed by simply differentiating

the mapping from margins to prices. Since the equilibrium margin distribution is

invariant to cost changes, all the action comes from how the mapping φ responds

to costs. Throughout, fix a firm i with equilibrium µ-quantile function µi(u).

5.1. The Pass-Through Formula. Quantile pass-through tells us how each price

in the distribution responds to cost changes. Because firms randomize in equilib-

rium, different quantiles of the price distribution can have different pass-through

rates. This heterogeneity in pass-through across the price distribution is a key

feature of markets with price dispersion.

Definition 7. The pass-through rate at quantile u is τQi (u;c) ≡ ∂pi(u;c)
∂c , where pi(u;c) =

φ(µi(u), c).

Theorem 5.1. Under Assumptions 2.3 and 2.4, the quantile pass-through rate is:

(5) τQi (u;c) = φc(µi(u), c) =
x(pi(u;c))(1− pi(u;c))

(1− c)[x(pi(u;c)) + (pi(u;c)− c)x′(pi(u;c))]

Proof. Recall the implicit definition (2):

(φ(µ,c)− c)x(φ(µ,c)) = µ(1− c)x(1).

Differentiating both sides with respect to c, holding µ fixed, and rearranging yields

φc[x(φ) + (φ− c)x′(φ)] = x(φ)−µx(1).

From (2), we have µx(1) = (φ−c)x(φ)
1−c . Substituting this in produces

φc[x(φ) + (φ− c)x′(φ)] = x(φ)
1−φ
1− c

,

so,

φc(µ,c) =
x(φ(µ,c))(1−φ(µ,c))

(1− c)[x(φ(µ,c)) + (φ(µ,c)− c)x′(φ(µ,c))]
.
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Finally, setting µ = µi(u) and noting that φ(µi(u), c) = pi(u;c) yields (5). ■

5.2. Economic Interpretation. The pass-through formula (5) reveals how market

power and demand curvature jointly determine cost incidence. The numerator

x(p)(1 − p) captures the direct effect of cost on profit: the factor x(p) reflects that

firms selling more quantity face a larger cost burden per customer served, while

(1 − p) represents the ”headroom” for price increases. Firms pricing closer to the

reservation value have less room to raise prices. Together, these determine the

pressure to pass costs through.

The denominator (1−c)[x(p)+(p−c)x′(p)] is the slope of the effective margin func-

tion, measuring how responsive profit-per-customer is to price changes. When de-

mand is highly elastic (large |x′ |), small price increases cause large quantity losses,

dampening pass-through. When demand is inelastic, firms can raise prices with-

out losing much quantity, facilitating pass-through.

Limiting cases provide important benchmarks. Under unit demand (x′ = 0), pass-

through is τ = (1−p)/(1− c); firms pricing higher have lower pass-through because

they are already extracting rents. Under perfect competition (p→ c), pass-through

approaches 1 since firms with zero markups must fully pass through cost changes

to break even. Under monopoly pricing, pass-through depends entirely on demand

curvature, potentially exceeding or falling below 100%.

6. Transaction-Weighted Pass-Through

While quantile pass-through describes how each price in the distribution re-

sponds to costs, welfare analysis requires understanding what consumers actu-

ally pay. This distinction matters because consumers do not randomly draw from

the price distribution; they systematically buy more at lower prices. This section

derives pass-through for transaction-weighted prices, which captures the average

pass-through experienced by consumers.

6.1. The Transaction-Weighting Problem. With price dispersion, the average posted

price differs from the average price paid by consumers. Lower prices attract more
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buyers, creating a composition effect. To see why this matters, consider a market

where half the firms charge $10 and half charge $20. The average posted price is

$15, but if 90% of the units sold are at the more attractive $10 price, the average

transaction price is only $11. This selection effect fundamentally changes how we

think about pass-through and incidence.

Lemma 6.1. Under the equilibrium indifference condition, the mass of transactions at

price p is:

(6) Ti(p;c) = x(p)qi(p) =
πi(c)
p − c

Proof. From the equilibrium indifference condition, for all p ∈ supp(Fi):

(p − c)x(p)qi(p) = πi(c)

Rearranging yields (6). ■

The key insight is that transaction volume is proportional to 1/(p − c), indepen-

dent of the demand function x(·). Intuitively, the equilibrium indifference condi-

tion ensures that all prices yield the same profit, so firms selling at lower prices

(with lower margins) must compensate with proportionally higher volume. This

invariance property greatly simplifies the analysis of transaction-weighted pass-

through.

Definition 8. The transaction-weighted CDF is:

(7) Ftrans
i (p;c) =

∫ p

c
1
s−cdFi(s;c)∫ 1

c
1
s−cdFi(s;c)

6.2. Mean Paid Prices and Markups. Next we note the harmonic mean of posted

markups. For firm i’s price distribution with support bounded away from c (which

holds when ρ > 0), we define

(8) Bi(c) ≡
∫

1
p − c

dFi(p;c)
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This integral is well-defined when the support of Fi is contained in [c + ϵ,1] for

some ϵ > 0, which occurs whenever there are captive customers (ρ > 0). Then, the

mean paid markup is the harmonic mean of posted markups:

Proposition 6.2. The mean transaction-weighted price is p̄trans
i (c) = c+ 1

Bi(c)
.

Proof. From (7), the mean paid price is

p̄trans
i (c) =

∫
pdFtrans

i (p;c) =

∫
p · 1

p−cdFi(p;c)∫
1

p−cdFi(p;c)
=

1 + cBi(c)
Bi(c)

= c+
1

Bi(c)
.

■

6.3. Transaction-Weighted Pass-Through. We now derive how mean paid prices

respond to cost changes. The analysis reveals a surprising result: transaction-

weighted pass-through can differ substantially from the simple average of quantile

pass-through rates. The reason is that cost changes affect not just prices but also

the distribution of transactions across prices.

Theorem 6.3. Under Assumptions 2.3 and 2.4, and when the support is bounded away

from c (which holds when ρ > 0), the transaction-weighted pass-through rate is

(9) τ trans
i (c) = 1 +

∫ 1
0

φc(µi(u),c)−1
(φ(µi(u),c)−c)2du[∫ 1

0
1

φ(µi(u),c)−cdu
]2

Proof. From Proposition 6.2:

τ trans
i (c) =

dp̄trans
i (c)
dc

= 1−
B′i(c)

Bi(c)2

We need to compute B′i(c). We take the quantile representation

Bi(c) =
∫ 1

0

1
pi(u;c)− c

du,
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and differentiate under the integral sign (valid by dominated convergence when

ρ > 0, which ensures pi(u;c)− c ≥ ϵ > 0 uniformly):

B′i(c) =
∫ 1

0

∂
∂c

(
1

pi(u;c)− c

)
du =

∫ 1

0

−(τQi (u;c)− 1)

(pi(u;c)− c)2 du = −
∫ 1

0

φc(µi(u), c)− 1
(φ(µi(u), c)− c)2du,

using pi(u;c) = φ(µi(u), c) and τQi (u;c) = φc(µi(u), c). Substituting into the expres-

sion for τ trans
i (c) yields (9). ■

6.4. Pass-Through in Terms of Consideration Parameters. The transaction-weighted

pass-through formula (9) simplifies dramatically under unit demand, yielding a

closed-form expression in terms of the consideration structure. This result pro-

vides a direct link between market structure (as captured by consideration sets)

and cost incidence, without requiring knowledge of demand curvature.

Proposition 6.4. Under unit demand (x(p) = 1), define for each firm i Ki ≡
∫ 1

0
1

µi(u)du,

where µi(u) is firm i’s equilibrium quantile function in the margin game. Then firm i’s

mean transaction price and transaction-weighted pass-through satisfy

(10) p̄trans
i (c) = c+

1− c
Ki

, and τ trans
i ≡

dp̄trans
i (c)
dc

= 1− 1
Ki

.

Proof. Under unit demand, p = c+(1−c)µ, so pi(u;c)−c = (1−c)µi(u). The transaction-

weighting identity

p̄trans
i (c) = c+

1
Bi(c)

, where Bi(c) =
∫ 1

0

1
pi(u;c)− c

du

implies

Bi(c) =
∫ 1

0

1
(1− c)µi(u)

du =
Ki

1− c
.

Substituting yields p̄trans
i (c) = c+(1−c)/Ki . The µ-isomorphism implies µi(·) is cost-

invariant, so Ki does not depend on c. Differentiating delivers τ trans
i = 1−1/Ki . ■

The object Ki measures the intensity of competition facing firm i, aggregated

across its transaction distribution. When the margin distribution places substan-

tial weight on low µ (contested transactions), Ki is large and pass-through is high:
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firms facing stiff competition pass cost shocks to consumers. When the distribu-

tion concentrates on high µ (captive transactions), Ki is small and pass-through is

low: firms with market power absorb cost shocks.

Under unit demand and symmetric consideration, the equilibrium quantile func-

tion satisfies µ(u) = ρ/H(1−u), where ρ = α{i}/σ is the captive-to-reach ratio and H

is the probability generating function. Hence, K = H̄
ρ , where H̄ ≡

∫ 1
0
H(s)d, and the

general formula (10) reduces to τ trans = 1− ρ
H̄

.

There is a natural application to mergers. Standard merger analysis focuses

on price levels. But mergers also affect how future cost shocks are transmitted

to consumers. By the separation principle, a merger changes the consideration

structure, which shifts each firm’s equilibrium margin distribution. Pass-through

at each quantile then follows from τQ(u) = φc(µ(u), c), and transaction-weighted

pass-through from Theorem 6.3. Under unit demand, this simplifies: the new

Ki =
∫
µi(u)−1du determines τ trans

i = 1− 1/Ki . Under independent consideration, a

merger between non-leader firms leaves the margin floor µ unchanged but shifts

posted distributions toward lower margins, raising Ki for the remaining firms and,

hence, the transaction-weighted pass-through. Even mergers with no immediate

price effect can shift the incidence of future cost shocks toward consumers.

7. Pass-Through Envelopes

In many empirical settings, we may not know the exact demand function. Per-

haps we observe that demand is downward-sloping but cannot pin down its pre-

cise curvature. Or we may know that demand belongs to a particular family (e.g.,

linear, constant elasticity) but not the exact parameters. This section shows that

even with such partial knowledge, we can still derive robust bounds on pass-

through. These bounds provide ”worst-case” scenarios for policy analysis, follow-

ing the robust welfare approach of Kang and Vasserman (2025), and help identify

when precise demand estimation is crucial versus when rough knowledge suffices.
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7.1. The Envelope Problem. Now let us turn the pass-through problem on its

head. Instead of starting with a known demand function and computing pass-

through, we ask: given a particular margin level µ and cost c, what is the range of

possible pass-through rates across all admissible demand functions?

Assumption 7.1. Let X denote the class of admissible demand functions x : [0,1]→

R+ that are continuous and weakly decreasing, have positive demand at the upper

bound (x(1) > 0, which we can without loss of generality normalize to x(1) = 1 by

rescaling quantity units), and satisfy the invertibility assumption (Theorem 2.4).

Formally, fix µ ∈ [0,1] and c ∈ [0,1). The inverse problem is to find all prices p

consistent with

(11) (p − c)x(p) = µ(1− c)x(1)

for some admissible demand function x(·).

7.2. Universal Bounds. We begin with the most general case: what can we say

about pass-through knowing only that demand is downward-sloping? The answer

provides universal bounds that apply regardless of the specific functional form.

Theorem 7.2. For any admissible x ∈ X, µ ∈ [0,1], and c ∈ [0,1), we have the price

bounds c ≤ φ(µ,c) ≤ c+µ(1−c) and the pass-through bounds 1−µ ≤ φc(µ,c). The upper

bound for prices and the lower bound for pass-through are attained by unit demand.

These bounds have important economic implications. The pass-through bound

τ ≥ 1− µ tells us that firms with lower market power (lower µ) have pass-through

rates bounded further from zero. In the limit, firms pricing at cost (µ = 0) must

have pass-through of at least 1, recovering the perfect competition result. Con-

versely, firms extracting maximum margins (µ near 1) could have pass-through

rates approaching zero.
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Proof. For price bounds, we normalize x(1) = 1 (by rescaling quantity units). Since

x is decreasing, we have x(p) ≥ 1 for p ∈ [c,1]. From (11),

µ(1− c) = (p − c)x(p) ≥ p − c =⇒ p ≤ c+µ(1− c).

The lower bound p ≥ c is trivial.

For the pass-through bound, from Theorem 5.1, with ε ≡ −(p − c)x′(p)/x(p) ∈

[0,1),

φc(µ,c) =
1−φ(µ,c)

(1− c)(1− ε)
≥

1− (c+µ(1− c))
1− c

= 1−µ,

as ε ≥ 0 and φ(µ,c) ≤ c+µ(1− c). ■

7.3. Bounds for Specific Demand Families. While universal bounds are useful,

we can derive tighter bounds when we know more about demand. Different as-

sumptions about demand curvature–whether demand is linear, exponential, or

has constant elasticity–yield different pass-through bounds. These family-specific

bounds help connect theoretical predictions to empirical demand estimation.

Theorem 7.3. For common demand families (with d ≡ 1− c):

(1) Linear demand x(p) = 1 + b(1− p) with b ∈ [0,1/d]:

φc(µ,c) ≤
1 +

√
1−µ

2
, with equality at maximum slope b =

1
d
.

(2) Constant semi-elasticity x(p) = eβ(1−p) with β ∈ [0,1/d]:

φc(µ,c) ≤ 1, with equality at β =
1
d
.

(3) Constant elasticity x(p) = p−η with η ≥ 0:

φc(µ,c) =
1−µ

(1−µd)2 when η = 1.

The proof, which provides complete derivations for each demand family, ap-

pears in Appendix B.4.

Figure 1 illustrates these bounds for the linear and CES demand families. The

left panel shows the linear demand family x(p) = 1+b(1−p) as the slope parameter
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Figure 1. Robust pass-through bounds by demand family.
Left panel: For linear demand x(p) = 1+b(1−p) with slope b ∈ [0,1/d],
pass-through lies between the unit demand lower bound τ = 1−µ and
the upper bound τ = (1 +

√
1−µ)/2. All linear demands yield τ ≤ 1.

Right panel: For CES demand x(p) = p−η , higher elasticity η pro-
duces over-shifting (τ > 1). Below the critical elasticity η ≈ 1.3, pass-
through eventually falls below one at high margins; above it, the in-
vertibility condition binds before τ can fall to one.

b varies from zero (unit demand) to its maximum b = 1/d. Unit demand delivers

the universal lower bound τ = 1 − µ, while steeper demand curves yield higher

pass-through, reaching the upper bound τ = (1+
√

1−µ)/2 at b = 1/d. Crucially, all

linear demands produce incomplete pass-through (τ < 1) throughout the margin

support.

The right panel reveals strikingly different behavior for CES demand x(p) = p−η .

As elasticity η increases, the pass-through curve rotates upward, eventually cross-

ing into the over-shifting region (τ > 1). A critical elasticity η ≈ 1.3 marks the

transition. Below this threshold, pass-through is incomplete at high margins but

can exceed one at low margins. Above it, the invertibility condition binds be-

fore pass-through falls to one, yielding pure over-shifting throughout the feasible

range. The endpoints of the CES curves reflect this constraint. High-elasticity

demands cannot support margins close to one because the required price would

violate invertibility.
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8. Comparative Statics

The separation principle yields a simple logic for comparative statics. Any com-

parison of prices or pass-through–whether across market structures, across firms,

or across demand specifications–reduces to comparing margin distributions and

applying the maps φ and φc. We develop this logic and its applications below.

The quantile pass-through formula (Theorem 5.1) expresses pass-through as a

composition τQ(u;c) = φc(µ(u), c). Any ordering of margins, therefore, translates

into an ordering of prices and pass-through, subject to the monotonicity properties

of φ and φc.

Proposition 8.1. Let µA(u) and µB(u) be two margin quantile functions (for the same

firm across different markets, or for different firms in the same market). If µB(u) ≥ µA(u)

for all u ∈ [0,1], then: (a) prices inherit the ordering, pB(u;c) ≥ pA(u;c) for all u, since

φ(µ,c) is increasing in µ; and (b) pass-through inherits the ordering if φc is increasing

in µ, or the reverse ordering if φc is decreasing in µ.

Proof. Part (a) follows from φ(·, c) strictly increasing (Lemma 3.1). Part (b) follows

from the formula τQ(u;c) = φc(µ(u), c) and monotonicity of φc. ■

For unit demand, φc(µ,c) = 1 − µ, which is decreasing in µ. So higher margins

imply lower pass-through. For linear demand, φc is also decreasing in µ. For CES

demand with high elasticity, φc can be increasing in µ, reversing the pass-through

ordering.

Consider first comparing the same firm across two consideration structures A

and B. If structure B induces higher margins–say, because fewer consumers are

informed or more are captive–then B has higher prices at each quantile. If demand

is not too convex (so φc is decreasing), then B also has lower pass-through at each

quantile: the less competitive market absorbs more of cost shocks.

The same logic applies to comparing different firms within a single market. We

established in Section 4 that higher-reach firms maintain higher margins at each

quantile in asymmetric equilibria. By the ordering principle, these firms charge
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higher prices at each quantile. If demand is not too convex, they also have lower

pass-through at each quantile. Firms with more captive customers extract higher

margins and absorb more of cost changes, partially insulating captive consumers.

In the symmetric benchmark (Definition 6), the equilibrium µ-quantile satisfies

µ (u) =
ρ

H (1−u)
, where H (s)B

1
σ

∑
S∋i

αSs
|S |−1.

Equivalently, if K B |S |−1 under the conditional law Pr(· | i ∈ S), then H (s) = E

[
sK

]
is the probability generating function of K . Letting βk B Pr(K = k | i ∈ S), we have

H(s) =
∑n−1

k=0βks
k. When αS depends only on m = |S |, let Am B

∑
|S |=mαS be the

mass of consumers considering exactly m firms; then βm−1 = mAm/
∑n

j=1 jAj and

H(s) =
∑n

m=1mAms
m−1/

∑n
j=1 jAj .

Corollary 8.2. Let KA,KB be the conditional rival-count random variables in two sym-

metric markets A,B. Then,

HA (s) ≤HB (s) ∀s ∈ [0,1] ⇐⇒ E

[
exp

(
−tKA

)]
≤ E

[
exp

(
−tKB

)]
∀t ≥ 0,

using s = exp(−t) and H (s) = E

[
sK

]
.

This equivalence connects the PGF ordering to the familiar Laplace-transform

ordering used in reliability theory and stochastic dominance.

Corollary 8.3. Consider two symmetric markets A,B with the same ρ. Then

HA (s) ≤HB (s) ∀s ∈ [0,1] ⇐⇒ µA (u) ≥ µB (u) ∀u ∈ [0,1] .

Consequently, under Assumption 2.3 one also has pA (u;c) ≥ pB (u;c) for all u ∈ [0,1]

and all c ∈ [0,1).

Proof. If HA (s) ≤ HB (s), then for each u ∈ [0,1] one has HA (1−u) ≤ HB (1−u),

hence µA (u) = ρ/HA (1−u) ≥ ρ/HB (1−u) = µB (u). Conversely, if µA (u) ≥ µB (u)

for all u, then ρ/HA (1−u) ≥ ρ/HB (1−u), so HA (1−u) ≤ HB (1−u) for all u, i.e.

HA (s) ≤ HB (s) for all s ∈ [0,1]. The price claim follows by the monotonicity of φ

and composition. ■
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Corollary 8.4. Fix two symmetric markets A,B with the same ρ. If there exists s∗ ∈

(0,1) such that HA (s∗) > HB (s∗), then letting u∗B 1− s∗,

µA (u∗) =
ρ

HA (1−u∗)
<

ρ

HB (1−u∗)
= µB (u∗) ,

so global first-order stochastic dominance of µ and, hence, of posted prices under As-

sumption 2.3 fails.

In the symmetric benchmark, µ (u) = ρ/H (1−u) makes clear that global domi-

nance can fail even if H-order holds, whenever the market-structure change also

shifts ρ.

The preceding results concern posted-price quantiles. For welfare analysis, transaction-

weighted prices matter. The following corollary shows that price dominance car-

ries through to mean paid prices.

Corollary 8.5. Fix c ∈ [0,1) and a firm i. Assume that in each market M ∈ {A,B} the

posted-price quantile function pMi (·;c) satisfies mM
i (c) B infu∈[0,1]

(
pMi (u;c)− c

)
> 0.6

If pAi (u;c) ≥ pBi (u;c) for all u ∈ [0,1], then BA
i (c) ≤ BB

i (c).

Proof. Directly,

pAi (u;c) ≥ pBi (u;c) =⇒ 1

pAi (u;c)− c
≤ 1

pBi (u;c)− c
(∀ u) =⇒ BA

i (c) ≤ BB
i (c) ,

as p 7→ 1/ (p − c) is strictly decreasing on (c,∞). ■

Together, these results provide a toolkit for comparative statics: the ordering

principle (Proposition 8.1) translates margin comparisons into price and pass-

through comparisons, whether across markets or across firms. Corollary 8.5 ex-

tends price orderings to transaction-weighted objects relevant for welfare.

6This ensures that BM
i (c)B

∫ 1
0

1
pMi (u;c)−c

du is finite.
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9. Economic Applications

Incidence varies across the price distribution. The framework characterizes

pass-through at each quantile, with patterns that depend on demand curvature.

We illustrate with two markets featuring well-documented price dispersion.

9.1. Gasoline Markets. Retail gasoline exhibits substantial price dispersion even

for a homogeneous product, with nearby stations often charging different prices.

This dispersion reflects heterogeneous consumer search: some drivers compare

prices across stations while others buy from the nearest option. Our framework

applies directly.

The empirical pass-through literature has documented significant heterogeneity

in gasoline markets. Marion and Muehlegger (2011) find that pass-through of state

fuel taxes varies with supply conditions, while Stolper (2017) shows that station-

level pass-through varies with local competition and spatial isolation. Montag

et al. (2023) document heterogeneity at the consumer level, finding that informed

consumers (who compare prices and buy cheap) face higher pass-through than un-

informed consumers (who buy from one station). Our theory provides an explana-

tion: differences in consideration patterns generate different equilibrium margins,

leading to different pass-through rates even with identical demand.

Under the framework, stations in competitive locations (where many consumers

compare prices) operate at low margins. If demand is not too convex, these stations

exhibit high pass-through. Stations in captive locations (highway exits, isolated

areas) charge higher prices and, under moderate demand curvature, absorb more

of cost shocks. The framework predicts that markets with more price-comparing

consumers have higher aggregate pass-through when demand is not too convex,

consistent with the empirical finding that pass-through is higher in urban areas

with more stations.

9.2. Online Retail. Online markets feature persistent price dispersion despite

low search costs. Ellison and Ellison (2009) show that firms actively obfuscate to
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soften price competition. Platforms shape consideration sets through search rank-

ings, algorithmic recommendations, and sponsored listings–even when consumers

can easily compare prices, they often consider only a subset of sellers.

Heim (2021) provides evidence linking search behavior to pass-through. Us-

ing data from price comparison sites, he finds that pass-through of input costs

depends on consumer search intensity: cost increases pass through less when con-

sumers search more. Our framework captures this mechanism: search intensity

determines which part of the margin distribution consumers transact at, and hence

which pass-through rate they face. Under sufficiently convex demand, consumers

transacting at lower margins face lower pass-through, consistent with Heim’s find-

ing.

The framework also applies to platform fees. Platforms charge sellers commis-

sions. These fees enter as costs and pass through to consumers. When a plat-

form shows each product to fraction λ of users, the symmetric equilibrium has

µ(u) = [(1 − λ)/(1 − λu)]n−1. Platforms that increase λ (showing more options) in-

tensify competition, lowering margins and raising pass-through. Platforms that

decrease λ (curating selections) create captive segments, raising margins and low-

ering pass-through. The same platform design choices that affect price levels also

affect who bears the platform’s fees.

10. Conclusion

This paper develops a framework for analyzing cost pass-through when equilib-

rium features a price distribution rather than a price point. The core contribution

is a decomposition: pass-through separates into a competition layer, where the

exogenous consideration-set structure determines the equilibrium distribution of

normalized effective margins, and a curvature layer, where demand elasticity de-

termines how these margins translate into prices. The µ-isomorphism shows that

the equilibrium margin distribution depends only on the consideration structure,

not on demand curvature or cost levels.
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We characterize equilibrium for both symmetric and asymmetric cases. With

symmetric firms, the equilibrium margin distribution has a simple representa-

tion in terms of the probability generating function for competitor counts. With

asymmetric firms under independent consideration, equilibria exhibit a hierarchi-

cal structure: the two highest-reach firms share the full support [µ,1], with only

the leader placing an atom at the monopoly margin, while lower-reach firms have

truncated supports. Higher-reach firms price higher at each quantile. This pattern

carries direct implications for pass-through under unit or linear demand.

The decomposition yields pass-through results that would be difficult to obtain

otherwise. We derive closed-form formulas at each quantile of the price distri-

bution, revealing heterogeneity invisible to single-price analysis. Under unit de-

mand, transaction-weighted pass-through takes a particularly simple form: τ trans
i =

1 − 1/Ki , where Ki =
∫
µi(u)−1du depends only on the firm’s equilibrium margin

distribution. With symmetric firms, this reduces to τ trans = 1 − ρ/H̄ , linking mar-

ket structure directly to incidence without requiring demand estimation. We also

characterize when aggregate pass-through can exceed unity: CES demand pro-

duces over-shifting at low prices while linear demand does not.

When demand is only partially known, we can still derive robust bounds on

pass-through. The universal lower bound τ ≥ 1 − µ holds for any downward-

sloping demand, with unit demand achieving this bound. For specific demand

families, tighter bounds apply: linear demand yields τ ≤ (1 +
√

1−µ)/2, while CES

demand can exceed unity depending on the elasticity parameter. These bounds are

useful for policy analysis when demand estimation is impractical or unreliable.

The framework suggests a natural empirical strategy: estimate consideration-set

patterns from choice data, then use demand estimates to compute pass-through.

With symmetric firms and unit demand, the sufficient statistic ρ/H̄ simplifies this

further, and the identification problem shifts from estimating demand elasticities

to measuring consideration sets, which may be easier to recover in some settings.
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Several extensions merit future research. Allowing firm-specific costs would

capture heterogeneous responses to input price changes. Perhaps most important

would be endogenizing the consideration structure. We take consideration sets as

primitive, but in practice they emerge as a part of the competitive process: firms

invest in advertising to expand their reach, platforms design algorithms that shape

which products consumers see, and consumers decide how much to search based

on expected gains. Each of these margins responds to cost shocks. When costs rise,

firms may advertise more aggressively to steal competitors’ captive customers,

platforms may adjust ranking algorithms, and consumers may search harder as

price dispersion widens. These responses feed back into the consideration struc-

ture, potentially amplifying or dampening the direct pass-through effects we char-

acterize. A full analysis of incidence would trace these indirect effects alongside

the direct price responses.

Appendix A. §3 Omitted Proofs

A.1. Proof of Lemma 3.2. Let Ui (µ)B µiq
µ
i (µ) denote firm i’s payoff.

Lemma A.1. Fix a consideration structure {αS}S⊆N with αS ≥ 0 and
∑

S⊆N αS = 1 and

assume uniform tie-breaking within each S. Then the µ-game admits a mixed-strategy

Nash equilibrium.

Proof. We verify the hypotheses of Dasgupta and Maskin (1986, Theorem 5).

1. Compactness of the strategy sets and boundedness of the payoffs. For each i,

the pure strategy set is Ai B [0,1], a closed interval. Moreover, for all µ ∈ [0,1]n,

0 ≤ q
µ
i (µ) ≤

∑
S∋i

αS ≤ 1, =⇒ 0 ≤Ui (µ) = µiq
µ
i (µ) ≤ 1,

so Ui is bounded.

2. Discontinuities occur only on diagonals. Fix i. If µ satisfies µi , µj for all j , i,

then in each set S ∋ i either i <MS (µ) or else MS (µ) = {i}, and this classification is

locally constant in a neighborhood of µ. Hence, q
µ
i (·) is locally constant and Ui (·)
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is continuous at such µ. Therefore, Ui can be discontinuous only when µi = µj for

some j , i, i.e., only on a union of diagonal hyperplanes.

Equivalently, in the notation of Dasgupta and Maskin (1986, Equation 2), we

may take D(i) = n − 1 and, for each j , i, define the one-to-one continuous map

f 1
ij (ai)B ai . Then

A∗ (i) =
{
µ ∈ [0,1]n : ∃j , i such that µj = f 1

ij (µi) = µi
}
,

and the set of discontinuities of Ui is a subset of A∗ (i).

3. The sum of payoffs is continuous (therefore, upper semi-continuous). For

any S , ∅, uniform tie-breaking implies that the total payoff generated by mass αS

equals αSmS (µ):∑
i∈S

µiαS
1
{
i ∈MS (µ)

}∣∣∣MS (µ)
∣∣∣ = αSmS (µ)

∑
i∈MS (µ)

1∣∣∣MS (µ)
∣∣∣ = αSmS (µ) .

Summing over all S ⊆N yields∑
i∈N

Ui (µ) =
∑

S⊆N,S,∅
αSmS (µ) .

Because each mS (µ) = minj∈S µj is continuous and there are finitely many sets S,

the sum
∑

i∈N Ui (µ) is continuous.

4. Ui is weakly lower semi-continuous in µi (Dasgupta and Maskin, 1986, Def-

inition 6). Fix i and fix µ−i . For each S ∋ i, define mS,−i B minj∈S\{i}µj , with the

convention m{i},−i B 1. Consider the one-variable function t 7→Ui (t,µ−i) on [0,1].

We claim that for every t0 ∈ (0,1], liminft↗t0 Ui (t,µ−i) ≥ Ui (t0,µ−i). To see this,

fix S ∋ i and examine the S-contribution to Ui . If t0 < mS,−i , then for all t suffi-

ciently close to t0 from below we still have t < mS,−i , so i is the unique minimizer

in S and the S-contribution equals αSt, which is continuous at t0. If t0 > mS,−i ,

then for all t sufficiently close to t0 from below we still have t > mS,−i , so i <MS (·)

and the S-contribution is identically 0 near t0. If t0 = mS,−i , then at t0 firm i is tied
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for the minimum in S, so the S-contribution at t0 equals

αSt0
1∣∣∣MS (t0,µ−i)

∣∣∣ ≤ αSt0.

For any t < t0, however, i becomes the unique minimizer in S, so the S-contribution

equals αSt. Consequently,

liminf
t↗t0

αSt = αSt0 ≥ αSt0
1∣∣∣MS (t0,µ−i)

∣∣∣ .
In all cases, the S-contribution satisfies the desired lower-semicontinuity inequal-

ity, viz., liminft↗t0 Ui(t,µ−i) ≥ Ui(t0,µ−i) for all t0 ∈ (0,1]; and summing over S ∋ i

yields liminft↗t0 Ui (t,µ−i) ≥ Ui (t0,µ−i). This left-limit inequality establishes Das-

gupta and Maskin (1986, Definition 6) with λ = 1 (full weight on the left-hand

liminf) for all t0 ∈ (0,1].

At the left endpoint, t0 = 0, we have Ui (0,µ−i) = 0 and Ui ≥ 0, so liminft↘0Ui (t,µ−i) ≥

0 = Ui (0,µ−i), so the condition holds trivially. Thus, Ui satisfies Dasgupta and

Maskin (1986, Definition 6) for all t0 ∈ [0,1]. .

5. Apply Dasgupta and Maskin (1986, Theorem 5). Steps 1-4 verify all hypothe-

ses of Dasgupta and Maskin (1986, Theorem 5). Therefore, the µ-game possesses

a mixed-strategy equilibrium. ■

A.2. Proof of Theorem 3.3.

Proof. Recall that firm i’s profit at price p is

Πi(p;c) = (p − c)x(p)qi(p) = (1− c)x(1) ·µ(p;c) · qi(p),

with the factor (1 − c)x(1) being constant across all firms and prices. Recall also

firm i’s normalized effective margin at price p:

µ(p;c) ≡
(p − c)x(p)
(1− c)x(1)

∈ [0,1],

and the inverse map φ(µ,c), which solves

(A1) (φ(µ,c)− c)x(φ(µ,c)) = µ(1− c)x(1).
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Setting, in turn, µ = 0 and µ = 1 in (A1) yield φ(0, c) = c and φ(1, c) = 1. Moreover

φ is increasing in µ. Hence, there is a bijection between price-CDFs Fi on [c,1] and

µ-CDFs F
µ
i on [0,1] via F

µ
i (µ) = Fi(φ(µ,c)).

For a profile µ ∈ [0,1]n and a nonempty set S ⊆N , define

mS (µ)Bmin
j∈S

µj , and MS (µ)B
{
j ∈ S : µj = mS (µ)

}
.

Under our uniform tie-breaking stipulation, consumers with consideration set S

allocate their mass αS equally across the minimizers MS (µ).

Recall that firm i’s demand when posting price p is

qi(p) =
∑
S∋i

αS ·E
[

1 {i ∈MS (p,p−i)}
|MS (p,p−i)|

]
.

When firm i posts µ and rivals use (F
µ
j )j,i , the demand share becomes

(A2) q
µ
i (µ)B

∑
S∋i

αS ·E
1

{
i ∈MS (µ,µ−i)

}∣∣∣MS (µ,µ−i)
∣∣∣

 .
The equilibrium indifference condition in the original game requires constant

profit on the support:

(p − c)x(p)qi(p) = πi(c), ∀p ∈ supp(Fi).

Dividing by (1− c)x(1):

µ(p;c) · qi(p) =
πi(c)

(1− c)x(1)
≡ π̃i ∀p ∈ supp(Fi).

Since φ is strictly increasing, the lowest-price firm in each consideration set is also

the lowest-margin firm, so qi(p) = q
µ
i (µ(p;c)). Under the bijection, the indifference

condition becomes:

µ · qµi (µ) = π̃i ∀µ ∈ supp(F
µ
i ),

which is precisely the equilibrium condition for a game with:

• Unit demand (quantity fixed at 1);
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• zero marginal cost;

• ”price” µ ∈ [0,1]; and

• demand shares computed via (A2) using µ-distributions.

Moreover, the transformed equilibrium conditions depend only on {αS} through

the demand-share formula. Neither c nor x(·) appears in the µ-space equilibrium,

though they determine the mapping φ back to prices.

To complete the bijection, we verify that any µ-equilibrium induces an equilib-

rium in the original game. Suppose (F
µ
i )i∈N is an equilibrium in the µ-game with

constant profits π̃i on the support. Then, for any p in the support of Fi :

Πi(p;c) = (p − c)x(p)qi(p)

= (1− c)x(1) ·µ(p;c) · qi(p)

= (1− c)x(1) ·µ(p;c) · qµi (µ(p;c))

= (1− c)x(1) · π̃i

where the third equality uses that qi(p) = q
µ
i (µ(p;c)) by construction, and the fourth

uses that µ(p;c) is in the support of F
µ
i when p is in the support of Fi .

For any p ∈ [c,1] outside the support of Fi , the corresponding µ(p;c) is outside

the support of F
µ
i . Since the map p 7→ µ(p;c) is strictly increasing (by Assumption

2.4), each deviation in price space corresponds to a unique deviation in µ-space.

Therefore, the ”no profitable deviation” inequality is preserved: if µ ·qµi (µ) ≤ π̃i for

µ off support, then (p−c)x(p)qi(p) ≤ (1−c)x(1)π̃i = πi(c) for the corresponding p off

support. Thus, the induced price distributions form an equilibrium with profits

πi(c) = (1− c)x(1)π̃i .

Existence of an equilibrium in the pricing game follows from Lemma A.1 (proved

above) combined with the bijection established here. ■

Appendix B. §4 Omitted Proofs

B.1. Proof of Proposition 4.1.
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Proof of Proposition 4.1. In any symmetric equilibrium, all firms use the same µ-

distribution Fµ. Let µ ≡ infsupp(Fµ) and µ̄ ≡ supsupp(Fµ). A standard undercut-

ting argument implies that, whenever 0 < ρ < 1, the distribution Fµ has no atoms

on
(
µ,1

]
: if there were an atom of size a > 0 at some µ0 ∈

(
µ,1

]
, then deviating to

µ0 − ε would strictly increase the probability of winning any consideration set S

with |S | ≥ 2 in the event that all rivals in S \ {i} draw µ0, which occurs with proba-

bility a|S |−1 > 0. The resulting discrete gain in demand dominates the O (ε) loss in

margin for ε small, contradicting optimality. Consequently, ties occur with prob-

ability zero on the interior of the support, and the demand share simplifies to the

atomless (Demand∗) expression. Thus, when firm i posts µ and all rivals use Fµ,

the demand share is

qµ(µ) =
∑
S∋i

αS

∏
j∈S\{i}

[1−Fµ(µ)] =
∑
S∋i

αS [1−Fµ(µ)]|S |−1 .

Let G(µ) ≡ 1−Fµ(µ) denote the complementary CDF. The equilibrium profit at µ

is

πµ(µ) = µ · qµ(µ) = µ ·
∑
S∋i

αSG(µ)|S |−1.

In any mixed-strategy equilibrium, profits must be constant on supp(Fµ).

We first handle degenerate cases. If ρ = 0 (no captive customers), then α{i} = 0

and the unique equilibrium is pure with all firms setting p = c (so µ = 0), yield-

ing zero profits à la standard Bertrand competition. If ρ = 1, then α{i} = σ and

consumers who consider firm i never consider any rival, so the unique symmetric

equilibrium is pure with µ = 1. Henceforth, assume 0 < ρ < 1.

We next show the support is a connected interval. Suppose, for contradiction,

supp(Fµ) were not connected. There would exist a gap (µ1,µ2) such that rivals as-

sign zero probability mass to (µ1,µ2). On that gap, Fµ(µ) (so, G(µ) too) is constant,

so qµ(µ) is constant, while πµ(µ) = µqµ(µ) is strictly increasing in µ. Therefore, πµ

is strictly increasing on [µ1,µ2], so πµ(µ1) < πµ(µ2). But the gap endpoints µ1,µ2 lie
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in supp(Fµ), so equilibrium indifference requires equal profits at both, giving the

contradiction. Thus, supp(Fµ) is an interval
[
µ, µ̄

]
.

We now show µ̄ = 1. Suppose instead that µ̄ < 1. Since Fµ is atomless on
(
µ,1

]
,

we have G(µ)→ 0 as µ ↑ µ̄. It follows that

lim
µ↑µ̄

qµ(µ) =
∑
S∋i

αS lim
µ↑µ̄

G(µ)|S |−1 = α{i},

because G(µ)|S |−1 → 0 for |S | ≥ 2 and equals 1 for S = {i}. Hence, the (constant)

equilibrium profit satisfies

π∗ = lim
µ↑µ̄

πµ(µ) = lim
µ↑µ̄

µqµ(µ) = µ̄α{i} < α{i}.

But deviating to µ = 1 yields profit 1 · α{i} = α{i}, because the firm then sells only

to captive consumers. This contradicts optimality, so µ̄ = 1. Therefore supp(Fµ) =[
µ,1

]
, and equilibrium profit equals

π∗ = 1 ·α{i} = ρσ,

where σ ≡
∑

S∋i αS and ρ ≡ α{i}/σ .

Indifference on
[
µ,1

]
implies that for every µ in the support,

µ ·
∑
S∋i

αSG(µ)|S |−1 = ρσ.

Dividing by σ and defining

H(s) ≡ 1
σ

∑
S∋i

αSs
|S |−1,

we obtain the equilibrium condition

µ ·H (G(µ)) = ρ, so µ =
ρ

H (G(µ))
.

With the quantile transformation u = Fµ(µ) = 1 − G(µ), this yields the quantile

function

µ(u) =
ρ

H (1−u)
.
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This formula also pins down the support endpoints. Since H(1) = 1
σ

∑
S∋i αS = 1

and H(0) = 1
σα{i} = ρ, we have

µ(0) =
ρ

H(1)
= ρ, and µ(1) =

ρ

H(0)
= 1,

so supp(Fµ) = [ρ,1].

To verify no profitable deviations exist, note first that profits equal π∗ = ρσ on

[ρ,1] by construction. If a firm deviates to µ < ρ, then it undercuts rivals surely

and wins all consumers who consider it, so qµ(µ) = σ and profit is µσ < ρσ = π∗.

Deviations to µ > 1 are infeasible since the strategy space is [0,1]. We conclude

that the constructed Fµ is an equilibrium.

Finally, the equilibrium is unique within symmetric strategies. When 0 < ρ <

1, there is positive probability of facing at least one rival conditional on being

considered, so H is strictly increasing on [0,1] (equivalently, if K ≡ |S | − 1 under

the conditional law P (· | i ∈ S), then H(s) = E

[
sK

]
and H ′(s) = E

[
KsK−1

]
> 0 for

s ∈ (0,1)). Thus, H is invertible on [0,1], and the indifference condition µH (G(µ)) =

ρ uniquely determines G(µ) (so Fµ too) on [ρ,1], delivering the unique quantile

function µ(u) = ρ/H(1−u). ■

B.2. Proof of Proposition 4.3.

Proof of Proposition 4.3. The proof follows the standard construction for asymmet-

ric price dispersion games (see Narasimhan, 1988).

First we pin down equilibrium profits. Firm 1 guarantees profit α1 by pricing

at µ = 1 (serving only captives). Firm 2 benefits from Firm 1’s high price floor

(µ = ρ1), guaranteeing rents above its captive share:

π∗1 = α1, and π∗2 = µ(α2 +α12) = ρ1(α2 +α12).

Note that π∗2 > α2 since ρ1 > ρ2. Moreover, from ρi = αi/(αi + α12), we have αi
α12

=
ρi

1−ρi and αi+α12
α12

= 1
1−ρi .
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Next, we use the two firms’ indifference conditions to back out the cdfs. When

firm 1 posts µ and firm 2 uses CDF F
µ
2 , firm 1’s profit is:

µ[α1 +α12(1−Fµ
2 (µ))] = α1 =⇒ 1−Fµ

2 (µ) =
ρ1

1− ρ1

(
1−µ
µ

)
.

When firm 2 posts µ and firm 1 uses CDF F
µ
1 , firm 2’s profit is:

µ[α2 +α12(1−Fµ
1 (µ))] = π∗2 = ρ1(α2 +α12) =⇒ 1−Fµ

1 (µ) =
1

1− ρ2

(
ρ1

µ
− ρ2

)
.

Finally, we pin down the support. At the lower bound, F
µ
1 (µ) = 0 requires ρ1

µ −

ρ2 = 1− ρ2, yielding µ = ρ1. At the upper bound, F
µ
2 (1−) = 1 confirms firm 2 mixes

continuously to 1. However, F
µ
1 (1) = 1− ρ1−ρ2

1−ρ2
< 1, confirming the atom ∆1. ■

B.3. Proof of Proposition 4.5.

Proof of Proposition 4.5. Fix j ∈ {1, . . . ,n} and fix rivals’ µ-CDFs
(
F
µ
i

)
i,j

. If the rivals’

CDFs are atomless at µ (so ties occur with probability zero), firm j’s demand share

when it posts µ is

q
µ
j (µ) = λj

∏
i,j

(
(1−λi) +λi

(
1−Fµ

i (µ)
))

= λj

∏
i,j

[
1−λiF

µ
i (µ)

]
,

and profit is

Πj(µ) = µq
µ
j (µ) = µλj

∏
i,j

[
1−λiF

µ
i (µ)

]
.

In what follows we will only apply this formula at µ ∈
(
µ,1

)
, where the candidate

equilibrium CDFs are continuous. If a deviation ever selected a point at which

some rival had an atom (here, the only such point is µ = 1 for firm 1), the deviator

could weakly improve by undercutting by an arbitrarily small ε > 0, because ties

are split while a strict undercut wins all tied consumers.

Define µ, (µ̄k)n+1
k=1, Cm, and the piecewise function Γ (·) as in the statement. Define

the candidate profile by

F
µ
j (µ) = 0 for µ < µ,
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and for µ ∈ [µ̄m+1, µ̄m],

F
µ
j (µ)B


Γ (µ)/λj , j ≤m,

1, j > m.

Finally set F
µ
1 (1) = 1 and F

µ
j (1) = 1 for each j ≥ 2.

These are well-defined CDFs. On each interval [µ̄m+1, µ̄m], Γ (µ) = 1−
(
µ/(µCm)

)1/(m−1)

is weakly increasing in µ, hence, so is F
µ
j (µ). Moreover, Γ (µ) = 0 (here m = n and

Cn = 1), so F
µ
j (µ) = 0 for all j. At each cutoff µ̄m+1 (for m ∈ {2, . . . ,n − 1}), the left-

and right-limit values coincide:

1−
( µ

µ̄m+1Cm+1

)1/m

= 1−
( µ

µ̄m+1Cm

)1/(m−1)

= λm+1,

where we used Cm = (1−λm+1)Cm+1 and the definition of µ̄m+1. Thus, each F
µ
j is

continuous on
(
µ,1

)
. In particular, ties occur with probability zero for any µ ∈(

µ,1
)
, so the demand formula above applies on all interior support points.

Now fix m ∈ {2, . . . ,n} and µ ∈ [µ̄m+1, µ̄m) ⊆
[
µ,1

)
. For each active firm i ≤ m,

λiF
µ
i (µ) = Γ (µ), while for each i > m, F

µ
i (µ) = 1. Accordingly, for any active firm

j ≤m,

Πj(µ) = µλj


∏
i≤m
i,j

[1− Γ (µ)]


∏
i>m

(1−λi)

 = µλjCm (1− Γ (µ))m−1 .

By the definition of Γ (µ) on this interval,

(1− Γ (µ))m−1 =
µ

µCm
,

so Πj(µ) = λjµ, which is constant in µ and does not depend on m. This establishes

indifference on every interval where firm j is active and yields the equilibrium

profit claim π∗j = λjµ.

The cutoff points µ̄k are pinned down by where each firm’s CDF reaches 1. On

the lowest interval
[
µ, µ̄n

]
we have m = n and Cn = 1, so Γ (µ) = 0 and so F

µ
j (µ) = 0

for all j, establishing the common lower bound. Take k ∈ {3, . . . ,n}. Firm k reaches
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F
µ
k (µ) = 1 precisely when Γ (µ) = λk. On the interval where the active set is {1, . . . , k},

we have m = k and Ck =
∏n

h=k+1(1−λh), so Γ (µ̄k) = λk implies

λk = 1−
( µ

µ̄kCk

)1/(k−1)

,

equivalently,

µ̄k =
µ

Ck(1−λk)k−1
=

∏k−1
h=2(1−λh)

(1−λk)k−2
,

as claimed (and µ̄2 = 1 by definition).

On the top interval [µ̄3,1] the active set is {1,2}, so m = 2 and C2 =
∏n

h=3(1−λh).

Then

Γ (µ) = 1−
µ

µC2
.

Taking µ ↑ 1 gives Γ (1−) = 1−µ/C2 = 1− (1−λ2) = λ2, whence

F
µ
2 (1−) =

Γ (1−)
λ2

= 1 and F
µ
1 (1−) =

Γ (1−)
λ1

=
λ2

λ1
< 1.

Thus, firm 1 has an atom at µ = 1 of size ∆1 = 1−λ2/λ1, while firm 2 has no atom

at µ = 1. Since firms k ≥ 3 have µ̄k < 1, they also have no atom at µ = 1.

It remains to show that no firm can profitably deviate. We already showed that

any µ in firm j’s support yields profit λjµ.

If µ < µ, then F
µ
i (µ) = 0 for all rivals i, so

Πj(µ) = µλj < µλj = π∗j .

Now fix µ ∈ [µ̄m+1, µ̄m] and suppose j > m. Then for each active firm i ≤ m,

λiF
µ
i (µ) = Γ (µ), hence

[
1−λiF

µ
i (µ)

]
= 1 − Γ (µ); and for each inactive firm i > m,

F
µ
i (µ) = 1, hence,

[
1−λiF

µ
i (µ)

]
= 1−λi . Therefore,

Πj(µ) = µλj

∏
i,j

[
1−λiF

µ
i (µ)

]
= µλj (1− Γ (µ))m

∏
i>m
i,j

(1−λi) .
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Using Cm =
∏

i>m (1−λi), we have∏
i>m
i,j

(1−λi) =
Cm

1−λj
,

so

Πj(µ) = µλj
Cm

1−λj
(1− Γ (µ))m .

On [µ̄m+1, µ̄m], the definition of Γ (µ) implies

(1− Γ (µ))m−1 =
µ

µCm
,

hence,

Πj(µ) = µλj
Cm

1−λj
(1− Γ (µ))m−1 (1− Γ (µ)) = λj µ

1− Γ (µ)
1−λj

.

Moreover, Γ (µ) is increasing in µ and satisfies Γ (µ̄m+1) = λm+1, so for all µ ∈ [µ̄m+1, µ̄m],

Γ (µ) ≥ Γ (µ̄m+1) = λm+1.

Since j > m and λ2 ≥ · · · ≥ λn, we have λj ≤ λm+1, hence Γ (µ) ≥ λj , which implies

1− Γ (µ)
1−λj

≤ 1 =⇒ Πj(µ) ≤ λj µ = π∗j .

Deviations to µ = 1 cannot do better than taking µ ↑ 1 from below, because µ = 1

creates a tie with firm 1’s atom and ties are split. Finally, µ > 1 is infeasible. This

establishes that no firm has a profitable deviation, so the constructed profile is an

equilibrium.

Uniqueness follows from the same logic that generates the construction. On

the lowest interval
[
µ, µ̄n

]
, all firms are active and each must be indifferent, so

Πj(µ) = π∗j for all j and all µ in that interval. Evaluating at µ = µ (where F
µ
i (µ) = 0

for all i since there are no atoms at the lower bound) implies π∗j = λjµ. Comparing

the indifference conditions for any two firms j,k on this same interval then forces

λjF
µ
j (µ) = λkF

µ
k (µ). Writing the common value as Γ (µ) pins down Γ (µ) on

[
µ, µ̄n

]
via µ (1− Γ (µ))n−1 = µ, hence, Γ (µ) = 1−

(
µ/µ

)1/(n−1)
. The cutoff µ̄n is then uniquely
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characterized by Γ (µ̄n) = λn. Proceeding inductively, on each higher interval where

exactly firms {1, . . . ,m} remain active, the boundary condition at µ̄m+1 and indiffer-

ence again force a common Γ (µ) and pin it down by µCm (1− Γ (µ))m−1 = µ, and

the next cutoff µ̄m is uniquely determined by Γ (µ̄m) = λm. Finally, Γ (1−) = λ2 pins

down F
µ
1 (1−) = λ2/λ1, so the only possible atom at µ = 1 is ∆1 = 1 − λ2/λ1, and

no other atoms are compatible with indifference because they can be profitably

undercut. We conclude that the equilibrium CDFs are uniquely determined. ■

B.4. Proof of Theorem 7.3.

Proof. We provide complete derivations for each case.

Case 1: Linear demand x(p) = 1 + b(1− p), b ∈ [0,1/d].

The effective margin equation (p − c)(1 + b(1− p)) = µd becomes:

(p − c)(1 + b(1− p)) = µd

Expanding: (p − c) + b(p − c)(1 − p) = µd. Let m = p − c, so p = c + m and 1 − p =

1− c −m = d −m. Then:

m+ bm(d −m) = µd

m(1 + bd − bm) = µd

bm2 −m(1 + bd) +µd = 0

Using the quadratic formula:

m =
(1 + bd)±

√
(1 + bd)2 − 4bµd
2b

For the relevant root (taking the smaller value to ensure p ≤ 1):

p − c =
(1 + bd)−

√
(1 + bd)2 − 4bµd
2b

For pass-through, we need φc(µ,c). The invertibility condition requires:

∂
∂p

[(p − c)(1 + b(1− p))] = 1 + b(1− p)− b(p − c) = 1 + b(1− 2p+ c) > 0
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This gives p < 1+b(1+c)
2b . At the boundary b = 1/d, the condition becomes p < 1.

At b = 1/d, the quadratic simplifies. Setting b = 1/d:

1
d
m2 −m(1 + 1) +µd = 0

m2 − 2md +µd2 = 0

m = d(1−
√

1−µ)

Thus p = c+ d(1−
√

1−µ) = 1− d
√

1−µ.

For pass-through at b = 1/d, we use implicit differentiation of (p − c)x(p) = µd

with b held fixed:

φc(µ,c) =
x(p)(1− p)

d[x(p) + (p − c)x′(p)]

At b = 1/d, x′(p) = −b = −1/d, and substituting the equilibrium values:

φc(µ,c) =
(1 +

√
1−µ)d

√
1−µ

d[(1 +
√

1−µ)− d(1−
√

1−µ)/d]
=

1 +
√

1−µ
2

Case 2: Constant semi-elasticity x(p) = eβ(1−p), β ∈ [0,1/d].

The effective margin equation becomes:

(p − c)eβ(1−p) = µdeβ

(p − c) = µdeβp

This is a transcendental equation. Taking logs:

ln(p − c) = ln(µd) + βp

Define W as the Lambert W function (satisfying W (z)eW (z) = z). We can write:

p =
1
β

[W (βµdeβc) + βc]

At the boundary β = 1/d, the invertibility condition becomes critical. The deriv-

ative:
∂
∂p

[(p − c)eβ(1−p)] = eβ(1−p)[1− β(p − c)]
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At β = 1/d and using the equilibrium condition (p − c) = µdeβp:

1− β(p − c) = 1−
µdeβp

d
= 1−µep/d

For this to be positive requires µ < e−p/d .

For pass-through at β = 1/d, using the general formula:

φc(µ,c) =
e(1−p)/d(1− p)

d[e(1−p)/d(1−µep/d)]

In the limit as we approach the boundary where 1 − µep/d → 0, the pass-through

approaches 1.

Case 3: Constant elasticity x(p) = p−η .

For η = 1: (p − c)p−1 = µd gives p = c/(1−µd), and:

φc(µ,c) =
1− p

d(1− ε)
=

1−µ
(1−µd)2

Boundary behavior: At the boundaries (b = 1/d for linear, β = 1/d for expo-

nential), the invertibility assumption (Theorem 2.4) becomes an equality at p = 1.

These are knife-edge cases where the strict inequality becomes weak. The pass-

through formulas remain valid by continuity, taking limits as we approach these

boundaries from the interior of the parameter space. ■
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