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Abstract

Competitive markets feature minimal informational complexity; agents only need to

know prices to implement an efficient allocation. However, the standard formulation of

competitive equilibrium neglects the mechanism of price formation, treating prices as ex-

ogenous. We study two explicit price formation mechanisms: trade intermediated by

market-makers and direct trade via random matching and bargaining. We show that as

the economy grows, the informational complexity of the random matching diverges to in-

finity relative to the competitive market. This divergence can be avoided if market makers

intermediate trade, providing a novel rationale for market-making if agents’ capacity to

deal with complexity is limited.
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1 Introduction

Economists have long noted that competitive markets exhaust gains from trade; that is, they

are Pareto efficient. This paper studies a second metric economists have used to argue that

markets are desirable. Market prices communicate all the relevant information dispersed

throughout the economy; that is, competitive markets minimize informational complexity. To

use the famous example from Hayek (1945, p. 526), when the price of tin increases, “All

that the users of tin need to know is that some of the tin they used to consume is now

more profitably employed elsewhere.” For the tin user, knowing that a shift in either supply

or demand caused the price increase would be redundant information; the price provides all

the information regarding market conditions that the user needs. Our paper argues that the

specific mechanism of price formation matters for the market’s informational complexity. We

show that a formal market mechanism, articulated as an intermediating agent who sets prices,

plays a fundamental role by providing the prices that communicate information to the agents;

otherwise, if buyers and sellers have to “produce” the market price by themselves, then this

result is an explosion of informational complexity.

Mount and Reiter (1974), Hurwicz (1977b), and Jordan (1982) showed that competitive mar-

kets, where agents take prices as given, feature “minimal information complexity.”1 However,

as Gale (2000) and others have asked: “Who sets the prices in a competitive equilibrium?”

They argue that instead of interpreting the model of competitive equilibrium as a literal de-

scription of the behavior of agents in the economy, it should be interpreted as a simplified

representation of an economy where prices are strategically determined, the frictions of trade

are low, and the number of agents is high. Building on this work on strategic foundations for

competitive equilibrium, we argue that markets should be thought of as minimizing informa-

tional complexity only if markets where strategic agents explicitly set prices can approximate

the informational complexity of the competitive equilibrium. Therefore, our paper studies

informational complexity in markets with strategic price-setters and without the Walrasian

auctioneer.

To study markets with strategic agents, we need to describe the market structure explicitly and

1The term they used was “informational efficiency,” however, because this expression today is used in
economics and finance to mean something else, we use the term “informational complexity.” See Section 2 for
further discussion.
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model intermediaries and other institutions that facilitate trade Spulber (1996b, p. 135). We

compare direct trade between randomly matched buyers and sellers, as in models such as Di-

amond (1982), Mortensen and Pissarides (1994), Kiyotaki and R. Wright (1989), Mortensen

and R. Wright (2002), and Duffie, Garleanu, and Pedersen (2005), to indirect trade medi-

ated through explicit market-makers/market institutions, as in models such as Gehrig (1993),

Spulber (1996a), Spulber (2002), and Rust and Hall (2003).2 We show that direct trade tends

to explode in terms of informational complexity and that indirect trade mediated through

intermediaries approximates the informational complexity of the competitive equilibrium.

In indirect trade mediated through explicit market-makers, buyers and sellers outsource the

price formation process to intermediaries, with positive trade frictions, the market-makers

profit by extracting part of the surplus from trade. These market-makers are arbitrageurs

who can buy low, sell high, and exploit opportunities other actors do not see.3 As trade

frictions go to zero, the market-makers still economize on information for the other agents,

but the arbitrage opportunities disappear, market-makers no longer make any profits, and the

allocation converges to the competitive allocation.4

We then extend the general market-maker model to a dynamic setting with a monopoly

market-maker. Other potential market-makers can pay a fixed cost to enter, and the market

is “contestable” as in Baumol (1982). In equilibrium, the monopoly incumbent will deter entry

and set all prices like the Walrasian auctioneer. Unlike the auctioneer, the market-maker is

strategic, and prices are endogenous. The downside is that, with positive frictions, there are

different bid and ask prices for the good instead of the single price from the auctioneer. The

spread means that to implement the market-maker allocation, the message space requires

only one more dimension than the unique minimally complex competitive market, making an

economy with a monopoly market-maker second-best compared to the competitive market.

Given that the market-maker microstructure approximates the low information complexity of

2Our model has similarities with the intermediation models of Gehrig (1993), Spulber (1996a), Spulber
(1996b), and Rust and Hall (2003). Following Rust and Hall (2003), we use the term market-maker because
they operate an exchange. There are subtleties of the market microstructure that we do not study. For example,
we do not address the difference between being a merchant or a platform Hagiu (2009) or a marketplace or a
reseller Hagiu and J. Wright (2015). See Spulber (2019) for a recent discussion.

3Following Kirzner (1973, pp. 14-6) there is a literature that calls these market-makers “entrepreneurs” who
”discover” profit opportunities in the market.

4The formal connection between no-arbitrage and competitive equilibrium is well understood in the case of
product markets (e.g., Makowski and Ostroy 1998) and financial markets (e.g., Werner 1987).
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the competitive market, it is natural to ask whether that is a feature of other microstruc-

tures. Our second result shows that the answer is no: we show that a standard, random

matching model, as articulated in Mortensen and R. Wright (2002), is unattractive from an

informational complexity perspective. If matching frictions are small, the random matching

mechanism is approximately competitive and, therefore, efficient. However, matching remains

inefficient from an informational complexity perspective. We show that the random matching

and bargaining allocation mechanism requires infinitely more information than the compet-

itive mechanism as the number of types of agents in an economy grows. Random matching

is informationally inefficient because each participating agent needs to have an exhaustive

picture of market conditions.

The paper is structured as follows: Section 2 discusses related literature. Section 3 lays out

the abstract environment within which we will consider the specific mechanisms. Section 4

explains the baseline competitive mechanism. We then construct our market-maker in Section

5. Section 5.4 develops a dynamic model with a monopoly market-maker. Section 6 describes

the matching and bargaining mechanism and our result on informational inefficiency. Section

7 concludes.

2 Related Literature on Informational Complexity and the

Foundations of Competitive Equilibria

The groundbreaking work of Mount and Reiter (1974), Hurwicz (1977b), Hurwicz (1977c),

and Jordan (1982) has shown that competitive markets require minimal information. Every

agent can be unaware of most of the economy, and their preferences are private. Mount and

Reiter (1974) showed that competitive equilibria are informationally efficient in the sense that

competitive prices communicate the minimum amount of information necessary to implement

a Pareto efficient allocation in an environment where information is dispersed. Jordan (1982)

proved that competitive prices are the unique decentralized mechanism that achieves informa-

tional efficiency and satisfies the individual rationality constraint: Jovanovic (1982) showed

that for any allocation mechanism that satisfies the individual rationality constraint (which he

defined as ”non-coercive”), implements a Pareto efficient allocation, and is informationally ef-

ficient, then that mechanism is the competitive allocation mechanism, that is, the mechanism
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implements the competitive equilibrium allocation. Thus, Mount and Reiter (1974) showed

the analogous result to the first welfare theorem for informational complexity, and Jovanovic

(1982) showed the analogous concept to the second welfare theorem for information efficiency.5

Informational complexity is a relevant metric to judge allocation mechanisms if decision-

makers are constrained by the quantity of information they can incorporate into their decision-

making process. In conventional economic theory, decision-makers maximize their utility re-

gardless of the complexity of their decision problem. In contrast, if agents are boundedly

rational Selten (2001) or have rational inattention Caplin and Dean (2015) and Maćkowiak,

Matějka, and Wiederholt (2020), the amount of information matters. Recent work has ex-

plicitly incorporated these limitations when evaluating alternative mechanisms Li (2017) and

Oprea (2020). Our paper suggests that certain allocation mechanisms are desirable institu-

tions not because humans are perfectly rational instantaneous utility maximizers but because

they are not. While we do not explicitly model any cognitive constraints, our results suggest

organized markets function as a means to reduce cognitive costs.

Also, there is a large literature on strategic foundations for competitive equilibrium, summa-

rized in Osbourne and Rubinstein (1990) and Gale (2000). Under various market microstruc-

tures, the strategic equilibrium of decentralized economies generates the same allocation as

the competitive equilibrium.Our paper shows that minimal informational complexity is not a

typical feature of those strategic mechanisms. In particular, the random matching and bar-

gaining model is one popular explanation for economists to expect competitive allocations as

frictions of trade are low (Gale 1986a; Gale 1986b), but a random matching and bargaining

equilibrium requires a much greater quantity of information than a competitive equilibrium.

Thus, matching markets can implement allocations that are approximately competitive when

frictions are low, but they cannot describe the low informational complexity that Hayek 1945

understood to be a feature of markets.

5Sato (1981) and Tian (2004) extended informational complexity results to convex economies with public
goods and externalities. More recently, Nisan and Segal (2006) extended this literature to non-convex economies
and the analysis of the allocation of indivisible goods.
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3 Environment

In this section, we define our physical environment and abstract allocation mechanisms. In

the next sections, we describe three specific allocation mechanisms and their properties in

terms of informational complexity: the competitive market in Section 4, the market-maker

mechanism in Section 5, and the random matching mechanism in Section 6.

3.0.1 Allocation mechanisms

Consider an economy with N individuals. For each individual I ∈ 1, 2, . . . , N , let Ei be the set

of “individual environments,” which specifies endowments and preferences for each individual.

Then, the set of possible environments E is the product of the set of individual environments,

so E =
∏

iE
i.

We let M be an abstract message space and Y be the set of feasible net trades for the

individuals of this economy. The non-empty valued correspondence µ : E ⇒ M specifies a

set of messages for each environment. Finally, the outcome function g : M → Y then maps

messages to net trades.

Putting this together, we can define an allocation mechanism, following Mount and Reiter

(1974), Hurwicz (1977b), and Hurwicz (1977c), and Jordan (1982):

Definition 1. An allocation mechanism is a triple (µ,M, g).

We call (µ,M) the message process of the allocation mechanism (µ,M, g): the message

process is the correspondence that specifies messages given each environment and the message

space M .

We are interested in informationally decentralized allocation mechanisms, which are mecha-

nisms that feature a message process (µ,M) that is privacy-preserving:

Definition 2. A message process (µ,M) is privacy-preserving if for each i there exists a

correspondence µi : Ei ⇒ M such that for each e = (e1, e2, . . . , eN ) ∈ E, the profile of

correspondences (µi)i∈{1,...,N}) satisfies

µ(e) = ∩i∈{1,...,N}µ
i(ei).
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In other words, a mechanism is privacy-preserving if each individual’s response to a message

only incorporates that person’s information and not the information of others: this a desirable

feature of a mechanism since only a consumer knows her endowment and preferences.

3.0.2 Physical environment

For simplicity, we study environments E where there are two goods: a consumption good and

a numeraire good. As agents can consume only positive quantities of the consumption good,

the consumption set is X = R+ × R. There is a continuum of consumers in this economy

of measure one. There are N types of consumers in this economy, each of identical measure

1/N . A type i ∈ {1, . . . , N} has preferences defined on X by a quasilinear utility function ui

that satisfies for x = (x1, x2) ∈ X, that ui(x) = u1i(x1) + x2, and u1i is strictly increasing,

concave, and continuous. Let F be the set of such functions and let wi ∈ X be the endowment

of consumers of type i.

A specific environment is a realization of e ∈ E that specifies a profile of quasilinear preferences

for the types (ui)i∈{1,...,N} ∈ FN and a profile of endowments for each type (w(i))i∈{1,...,N} ∈

XN . Thus, e = (ui, w(i))i∈{1,...,N} and E = FN ×XN .

Let y ∈ R2N be a vector of net trades for all individuals. Let Y be the set of feasible net

trades which satisfies

Y = {y = (yi)i={1,...,N} :
∑
i

yi = 0, yi + wi ∈ X ∀i}.

In addition, an allocation mechanism (µ,M, g) is said to be non-coercive (that is, satisfies

the participation constraint) if the allocation implemented by the mechanism yields a higher

utility than consuming the endowments. This definition is stated formally below:

Definition 3. The mechanism (µ,M, g) is non-coercive if for each y ∈ g(µ(e)) then u(wi +

yi) ≥ u(wi) for all i ∈ {1, . . . , N}.
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4 The Competitive Allocation Mechanism

The competitive mechanism is a triple (µc,Mc, gc). The message space Mc is described by

Mc = {(p, y) ∈ R2
++ × Y : py(i) = 0 ∀i}. (1)

In words, it is the set of prices and net trades that preserve the budget balance of all consumers.

Consider a message correspondence µi
c for each consumer i:

µi
c(e

i) = {(p, y) ∈ Mc : y(i) ∈ arg max
y∈{z∈R2:pz=0}

ui(y)}. (2)

The message correspondence for the competitive allocation mechanism µc is the intersection

of these correspondences:

µc(e) = ∩iµ
i
c(e

i). (3)

In words, the competitive message correspondence consists of prices and allocations that map

the set of physical environments into messages that maximize utility for each consumer. By

construction, the message correspondence is privacy preserving.

The outcome function gc just maps the message space into the set of net trades:

gc((p, y)) = y. (4)

Thus, the reader can check that for an environment e ∈ E, µc(e) yields the competitive equi-

librium allocation and prices: it specifies prices and net trades that maximize the utility of

consumers and are feasible, and the set of ”outcomes” gc(µc(e)) describes the set of equilib-

rium net trades for the environment e. Thus, if the competitive equilibrium exists for an

environment e ∈ E, then µc(e) and gc(µc(e)) are non-empty.

In the competitive mechanism of the N -types economy, the message space includes only one

price (as the price of the numeraire good is normalized to 1) and N types of consumers minus

one for market clearing. Therefore, we have the following lemma:

Lemma 1. The message space of the competitive mechanism Mc is N -dimensional in the

8



sense that it is diffeomorphic to an N -dimensional manifold.

Proof. See Appendix Subsection B.1 □

Jordan (1982) showed that, under mild regularity conditions, the competitive mechanism is the

unique noncoercive mechanism that achieves minimal informational complexity in implement-

ing a Pareto efficient allocation. That is, any other non-coercive mechanism that implements a

Pareto efficient allocation requires a higher dimensional message space. Thus the competitive

mechanism is the benchmark for other mechanisms.

Price

Public Price p

Consumer 1

Consumer 2

Consumer 3

Consumer 4

(a) Prices

y1

y3

y2

Market Clearing

Quantities Traded

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Auctioneer

(b) Quantities

m = (p, y11, y21, y32)

(c) Message

Figure 1: Example Competitive Mechanism with N = 4

For example, consider an economy with four types in Figure 1. The allocation mechanism

needs to communicate the relevant information about both prices and quantities. There is

one public price for the consumption good for all consumers to know, as shown in Figure 1a;

the price of the numeraire good can be normalized to one. For the quantities, the mechanism

informs each consumer of the quantity of the consumption good to trade; the quantity of the

numeraire is implicitly given by the budget balance. Also, if we know the net trades for all

but one type, then market-clearing implies the net trades for the last type. Therefore, the

dimensionality of the message space is 4: one price and net trades of the first three types of

consumers.

9



5 Informational Complexity under the Market-maker Mecha-

nism

Instead of a perfectly competitive market, in this section, we consider explicit market mi-

crostructure: there is a finite set J of “market-makers” in this economy. Market-makers are

profit-maximizing6 intermediaries that “make the market” by posting bid and ask prices for

the consumption good and intermediate trade between the consumers.7 Buyers purchase from

the lowest-priced market-maker they have access to as long as it is lower than their valuation,

while sellers sell at the highest-priced market-maker as long as the posted price is higher than

their cost. For simplicity, in this section, we suppose that the utility function of the consumers

for the consumption good is strictly concave, so the competitive equilibrium is unique.8

5.1 Frictionless Environment

First, consider the case where consumers have full and costless access to the prices posted by all

market-makers. This environment implements the competitive mechanism through Bertrand

competition. To see this, consider a market-maker who posts a pair of bid and ask prices

(pb, ps) ∈ R2
++ for the consumption good, which are, respectively, higher and lower than the

prices posted by all other market-makers. In that case a consumer will either purchase the

consumer good for ps or sell the consumer good for pb.

Let Di(p) be the demand of a consumer of type i for the consumption good. As there are bid

and ask prices, consumers partition themselves into two groups: the types that have excess

demand for the good and choose their demand according to Di(ps) and the types who have

excess supply who choose the quantity according to Di(pb). Because demand is downward

sloping, which means here Di(ps) < Di(pb) if pb < ps, there might be some types i where

Di(ps) ≤ wi1 ≤ Di(pb): some people may be net suppliers, and some may be net demanders.

6Only attribute utility to the numeraire good.
7In our model, market-makers perform the same role as in Spulber (1996a) and Spulber (1996b). We have a

finite number of market-makers, and consumers are matched with different probabilities to each market-maker.
8As the utility function is strictly increasing, demand is single-valued, continuous, and strictly decreasing

on price, implying a unique competitive equilibrium price p∗.
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The market-maker chooses (pb, ps) to maximize profits, which are

π(ps, pb) = (ps − pb)×

 ∑
i:Di(pb)<wi1

[wi1 −Di(pb)]

 , (5)

subject to the market clearing constraint that the quantity brought from sellers is equal to

the quantity demanded by buyers:∑
i:Di(pb)<wi1

wi1 −Di(pb) +
∑

i:Di(ps)>wi1

wi1 −Di(ps) = 0. (6)

If the market-maker posts bid prices lower than some other market-maker, then no seller will

sell to it, and its profits will be zero. If the maker posts bid prices higher than all others

but not the lowest ask prices, the market-maker has monopolized the supply, and profits also

satisfy Equation 5 subject to the resource constraint 6.

Proposition 1. If at least two market-makers are operating, then there is only one Nash

equilibrium: for at least two market-makers to post a pair of bid-ask prices (pb, ps) = (p∗, p∗);

market-makers post the competitive equilibrium price.9

Proof. See Appendix Subsection B.2 □

5.2 Frictions of Trading: Constrained Consideration Sets

The simple strategic model of intermediation studied in the previous section can provide strate-

gic foundations for competitive markets, but as real markets exhibit many imperfections, here

we construct an extension of this model that allows its equilibrium to feature “imperfections”

of markets such as market power and price dispersion.

Suppose that consumers have constrained access regarding the market-makers that they can

trade with.10 For each market-maker j ∈ J , let mj ∈ (0, 1] be the fraction of consumers with

9Note that the market clearing constraint prevents a market-maker from monopolizing the supply and
posting the monopoly price as an equilibrium: that would be part of an equilibrium if the demand from the
buyers were inelastic. In that case, a market-maker could make zero profits by posting a higher ask price than
the competitive price and selling part of the supply at the (revenue maximizing) monopoly price. However, the
quantity supplied at a higher ask price is strictly higher, and the quantity demanded is strictly lower than in
competitive equilibrium. Thus, there will be excess supply, and the market-maker will not satisfy the resource
constraint (as we do not allow excess supply in our market-clearing condition). This explains why our set of
possible equilibrium is restricted compared to Stahl (1988).

10Other studies, such as Perla (2019), Guthmann (2024), McAfee (1994), Brian C. Albrecht (2020), and Arm-
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access to market-maker j. We assume that access is randomly and independently distributed,

so a fraction mj of consumers of any type has access to market-maker j and the fraction of

consumers with access to market-makers j and j′ is mj × mj′ . Independence also implies

that the fraction of consumers who are aware of the seller j conditional on being aware of a

competitor is mj . A consumer’s access to market-makers is private information, so market-

makers cannot discriminate consumers based on their access.

A consumer type is defined by its utility function ui and accessibility Ai ⊂ J . As access is

independently distributed, if mj < 1, ∀j, then there is a positive measure of consumers without

access to any market-maker. Let NA (for “no-access”) be the index for this set of consumers

ANA. The budget set for a consumer of type i includes all pairs of prices from market-makers

that they have access to:

Bi = {y ∈ X − wi : ∃j ∈ Ai such that pj(y)y = 0}, (7)

where pj(y) are the prices posted by market-maker j conditional on net-trade y (that is, if

the consumer chooses a positive quantity of the consumption good, the price is pb, and if the

consumer chooses a negative quantity, the price is ps).

As consumers’ valuations and access to market-makers are private information, market-makers

are constrained to uniform pricing policies where there is no price discrimination. In this case,

each market-maker posts a pair of bid and ask prices, and the consumers choose the best

prices among the market-makers they can access.

We describe a strategy of the market-makers by a pricing function p that assigns bid and

ask prices for an α ∈ [0, 1], which represents the fraction of the monopoly profit that can

be extracted from the consumers. Let p(α) = (pb(α), ps(α)) and note that (pb(1), ps(1)) =

(pMb , pMs ), the monopoly price that maximizes a market-maker’s profits conditional on it being

a monopoly (note they satisfy market-clearing to be feasible). The profits earned from the

consumers from trades that are executed when there is a pair of bid and ask prices p(α) are

a fraction α of the monopoly profits, which we denote by ΠM .11

strong and Vickers (2022), use terms such as “awareness,” “availability rate,” “choice set,” “loyal customers,”
and “consideration set” to indicate the subset of agents that buyers or sellers have access to.

11Access is independently and uniformly distributed. Therefore, the quantities bought and sold by consumers
in response to a pair of bid and ask prices are proportional to the access parameter mj , which means that in an
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A profile of actions is described by {αj}j∈J for each market-maker. A mixed strategy profile

is a profile of cumulative distribution functions {P j}Jj=1 on [0, 1] that for α ∈ [0, 1] assigns

a cumulative probability P j(α) ∈ [0, 1] of posting bid and ask prices that yield lower profits

than (pb(α), ps(α)).

An equilibrium is a profile of mixed strategies {P j}Jj=1 such that posting a pair of bid and ask

prices p(α) for α on the support of the distribution P j is profit-maximizing for market-maker

j. As stated in Proposition 2, given a profile of access parameters m = (mj)j∈J such that

there exists at most one market-maker of whom all consumers are aware of, there is a unique

equilibrium strategy profile {P j}Jj=1 in this environment. The equilibrium mixed strategy

profile described in Proposition 2 has the following properties: the distributions of prices

posted by the market-makers are non-degenerate and are continuous on the interior of the

support, and the larger market-makers (in terms of the mj) transact at higher profit margins

than smaller market-makers in the sense that the distribution of margins between ask and

bid prices of the larger market-makers first-order stochastically dominate those of the smaller

market-makers. The reason for this result is that (since access is uniformly and independently

distributed) it is less likely that buyers and sellers have access to a competitor of a large

market-maker than a competitor of a smaller market-maker, so the larger market-maker loses

fewer customers if the spread between the buy and sell prices is increased.

Proposition 2 (Market-maker Equilibrium). If m is such that mj < 1 for at least J − 1

market-makers, then there is a unique equilibrium that consists of a profile of mixed pricing

strategies {P j}j∈J and a sharing rule: for a pair market-makers h and g, if mh < mg, then

consumers with access to both will trade with h if the posted prices are the same.

The profile of equilibrium strategies defined on [0, 1] features connected supports [αj , αj ] for

each market-maker j ∈ J , which share a common lower bound of the support α. The distribu-

tions are continuous on [α, 1). For each j ∈ J , for α ∈ [αj , αj ], P j(α) satisfies

P j(α) =
mj

mj
P j(α),

economy with one market-maker who posts p(α), then the profits created by that market-maker are a fraction
α of the profits under monopoly prices. In addition, independence implies that for an economy populated by
two market-makers j and j′, if j is playing prices according to αj and j′ is playing αj′ with αj′ < αj—which
implies consumers prefer the prices by j′—then the profits of j are mj(1−mj′)× α×ΠM . Independence also
implies that if the prices posted by j imply feasible net trades under monopoly (so the quantity supplied equals
the quantity demanded), then if j loses consumers to the competition of j’s proposed prices, that implies a

proportional loss of quantity supplied and demanded (in both cases equal to mj′ ∈ (0, 1]), which means that
feasibility still holds.
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where j is the market-maker with the largest awareness parameter m. The distribution P j is

given by ∏
j ̸=j

(1−mjP j(α))α =
∏
j ̸=j

(1−mj).

Proof. See Appendix Subsection B.3. □

The reader can note that the equilibrium strategies converge to the competitive equilibrium

as consumers approach full access to at least two market-makers:

Corollary 1 (Convergence to Competitive Equilibrium). Consider a sequence of access pa-

rameter profiles mn for the market-makers. If, for at least two market-makers h, g, mh
n

and mg
n both converge to one, then the equilibrium pricing strategies {P j ,p}j∈J converge in

probability to a competitive equilibrium price p∗.

5.3 Allocation Mechanism

The allocation mechanism implicit in the market maker game, in this case, implements the

allocation corresponding to a realization of the Nash equilibrium in mixed strategies. Note

that if there is imperfect access regarding almost all the market-makers (that is if (mj)Jj=1

satisfies mj = 1 for at most one j), then for any market-maker the posted price for buying is

strictly smaller than for selling with probability one, and therefore profits are strictly positive.

Following Hurwicz (1977a), we can interpret the profits of the market-makers and the resulting

deadweight losses to be both components of the “cost” of operating the allocation mechanism.

The set of net trades incorporates the possibility of market-makers making profits by buying at

lower prices than they sell. Let Ym be the set of net-trades in this allocation mechanism, which

are defined for each market-maker and each consumer type. Let Yj be the set of net-trades

for market-maker j, it is described by

Yj = {(yji ){i=1,...,N} ∈ R2N :
∑
i

(yji1, y
j
i2) ∈ (0,R−)}. (8)

Note that if j ∈ J , then the set of trade trades with j must be feasible (so the quantity of the

consumption good sold and brought must add up to zero).

14



As some consumers do not have access to any market-maker, let YNA correspond to the net

trades implemented by the mechanism to consumers without access to any market-maker,

where consumers cannot trade. In this case, only the null-set is an element of the set of

net-trades:

YNA = {(yNA
i ){i=1,...,N} = (0, 0)N}. (9)

Then, the set of net trades Ym is described by

Ym = {{yj}j∈J∪{NA} : yj = (yji ){i=1,...,N} ∈ Yj}

where j is either a market-maker (so j ∈ J) or j = NA, which indicates that a market-maker

is not available.

Given a realized profile of prices pm = (pjs, p
j
b)j∈J , the message space is given by

Mm = {(pm, y) ∈ R2J
++ × Ym : ∀j ∈ J, pjyi1 + yi2 = 0}.

To construct the privacy-preserving message correspondence we define the correspondences

for each consumer type i, where µi
m : Ei ⇒ Mm satisfies for any (pm, y) ∈ µi

m(ei) that the

vector of net-trades for consumer i, (yi1, yi2), is utility maximizing given the profile of bid

and ask prices that consumer of type i has access to among market-makers in Ai, that is

(yi1, yi2) ∈ argmaxy∈Bi ui(wi + y). Then, µm is a correspondence on E to Mm that satisfies

µm = ∩iµ
i
m(ei).

5.3.1 Informational Complexity of the Allocation Mechanism

In this environment, the dimensional size of the message space incorporates the different

market-makers that make the market: if there are k market-makers, then there are 2k different

prices posted to the consumers, and there is a subset of consumers who lack access to any

market-maker. The cardinality of the set of consumer types is N(k! + 1) as consumers can
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have access to either any subset of the market-makers or none. However, consumers only

trade with the market-maker in his accessibility set with the most favorable prices. Therefore,

we can represent the set of consumer types in the allocation mechanism by a coarser set of

consumer types that only describes his utility function and the market-maker that he trades

with.12 Thus, the set of types has cardinality N × k + 1, if a positive fraction of consumers

lack access to any market-maker, since all types of consumers that do not have access to a

market-maker have null net trades, and N × k if all consumers have access to at least one

market-maker.

Given a realization of prices of the equilibrium price-posting game among market-makers,

market-clearing among consumers who interact with each market-maker implies that the mes-

sage space corresponding to environments with N different utility functions for consumers is

Z-dimensional, where Z is equal to 2k + (N − 1)k if all consumers have access to a market-

maker or 2k + (N − 1)k + 1 if not. This is so because there are bid and ask prices for the

consumption good posted by each market-maker (thus 2k prices), and net trades are defined

for either Nk or Nk + 1 types of consumers, and the net-trade implemented for each type

of consumer can be represented in one dimension as we know the price.13 This implies the

following proposition:

Proposition 3. As the number of types of preferences N increases to infinity, the ratio of

the dimensional size of the message spaces of the market-maker mechanism to the competitive

mechanism converges to k.

That is, the ratio of the size of the message spaces between the competitive mechanism and

the market-maker mechanism is approximately the number of market-makers operating in the

market. This result is intuitive since the competitive mechanism implicitly assumes a single

monopolist market-maker called the Walrasian auctioneer whose bid and ask prices have zero

spread.

12That is, the computation of the dimensional size of the message-space does not need to include the infor-
mation of which other market-makers the trader was aware aside from the one she transacted with.

13The net trade can be represented as a quantity of the consumer good and the quantity paid/received
by the consumer of the numeraire is implicitly implied by the budget constraint. Formally, it means we can
construct a C∞- diffeomorphism between the message space and a Euclidean space of either 2k + (N − 1)k or
2k + (N − 1)k + 1 dimensions.
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5.4 Contestable Markets

Our model of market-makers has a message space that is approximately proportional to the

number of market-makers. Thus, this model implies that implementing an approximation of

the competitive allocation requires at least twice the amount of information (an economy with

two market-makers). Here, consider an extension of the model into a dynamic environment

with contestable market-making, which allows the economy to approximate the informational

complexity of the competitive mechanism by considering a monopolist market-maker who can

deter the entry of other market-makers. If all consumers have access to the monopolist, the

number of consumer types is N , but a pair of prices is realized instead of one price in the case

of the competitive mechanism. This case represents the most minimally complex allocation

mechanism in this class of market-maker environments, with informational size N + 1: one

dimension more than the competitive mechanism. This additional dimension reflects the

profit margin between purchase and sale to incentivize the market-maker to “produce” the

price mechanism.

In this environment, time is discrete, t = 0, 1, 2, . . ., and let β = 1/(1 + r) be the discount

factor. The consumption good is perishable, and consumers’ endowments can be interpreted

as a constant stream of the perishable consumption good.

Accessibility Diffusion: Given a set J of market-makers, there is an accessibility profile

{mj
t}Jj=1 ∈ (0, 1]J . Suppose accessibility regarding a market-maker diffuses through the econ-

omy according to

mj
t+1 = (1− δ)mj

t +M(mj
t , 1−mj

t ), (10)

where M (following Guthmann 2023) is a matching function that represents the diffusion of

accessibility through consumers who hitherto had access to the market-maker, and δ ∈ [0, 1)

is the rate at which consumers lose access to a market-maker (i.e., accessibility depreciation

parameter).

In period zero, each market-maker chooses to post prices according to a sequence of distribu-

tions for each period. Since the choice of the pricing strategies does not have any effect on

the state of the market, the optimal strategy for each market-maker is to choose the profit-

maximizing pricing behavior in each period, given the action profile of the other market-makers
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in that period. Therefore, at time t the prices practiced in the market are {P j}j , described

in Proposition 2 with accessibility profile {mj}j .

We are interested in the convergence of equilibrium to the competitive equilibrium: let D be

the probability that the prices consumers have access to are posted from a distance ϵ > 0 from

competitive equilibrium prices. The economy converges to the competitive equilibrium when

D converges to zero. Proposition 4 follows from Proposition 2, as the expected equilibrium

margin between bid and ask prices posted by the market-makers converges to zero if limmj
t = 1

for mj
t > 0 and J ≥ 2. Therefore, consumers’ accessibility regarding the market-makers

operating converges to one as t → ∞. This implies that consumers are converging to having

access to bid and ask prices that are converging in probability to the competitive price.

Proposition 4. If there are at least two market-makers and if the law of motion for accessibil-

ity diffusion (equation 10) implies that limmj
t = 1 for mj

t > 0, then as t → ∞ the equilibrium

prices and the equilibrium allocation converge in probability to the competitive equilibrium.

5.4.1 Contestable Market Equilibrium

We will now show how a single market-maker (N = 1) approximates the competitive outcome

if the market is contestable in the sense of Baumol (1982). To model a contestable market,

we introduce introduce entry. To represent the possibility of entry, let a potential entrant be

a market-maker j with accessibility parameter mj
t = 0. This potential entrant can enter the

market incurring an entry cost E > 0, which is the cost of setting up an entry-level accessibility

parameter me ∈ (0, 1).

There are two market-makers indexed by 1 and 2. Further, at a date, t = 0 suppose that

m1
0 = 1,m2

0 = 0, that is, in period 0, market-maker 1 is a monopolist that all consumers have

access to and market-maker 2 is out of the market. However, 2 can decide to enter at any

period. A monopoly deterrence equilibrium is a situation where the incumbent market-maker

1 posts a pair of bid and ask prices in each period such that the profits of a prospective

market-maker from offering better prices to consumers are too low to compensate for the cost

of entering the market.

Definition 4. A monopoly deterrence equilibrium is an equilibrium where 1 chooses a pricing

schedule and, given this pricing schedule, 2 finds it optimal not to enter. The pricing schedule
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is profit-maximizing for two reasons. First, a higher bid-ask margin that yields higher profits

for 1 would mean that 2 would enter and undercut 1’s posted offers in every period. Second,

the schedule is profit-maximizing in the sense that it yields a higher discounted expected value

of the profit stream for 1 than the expected value of the profits in the equilibrium under a

duopoly if 2 also enters the market.

The proposition below states that if entry costs are high enough and accessibility diffusion

is fast enough, then the unique equilibrium is for the monopolist to deter entry. This occurs

as the entry cost is higher than the expected profits that can be obtained in the duopoly

competition. However, monopolist 1 must commit to a sequence of prices that still deters the

entrant. The unique equilibrium is the sequence of prices that makes 2 indifferent between

entering and not entering, but that maximizes the present value of 1’s profit stream. As the

discount rate decreases, the present value of the gains from entering the market increases. This

implies that the bid and ask prices posted by the monopolist become closer to the competitive

equilibrium price. Therefore, even with a single active market-maker, when the discount rate

is sufficiently low, competition “for the field”—to borrow a phrase from Demsetz (1968)—is

sufficiently intense such that the equilibrium approximates the competitive equilibrium.

Proposition 5. If accessibility diffusion is fast enough, such that
∑∞

t=0(1−m2
t ) ≤ C for some

constant C conditional on market-maker 2’s entry, and the discount rate r is low enough,

then for an entry cost E equal or higher than C ×πM , the unique equilibrium is the monopoly

deterrence: The monopolist commits to post prices p(π) that yield a per-period profit of

π = E/

( ∞∑
t=0

βtm2
t

)
to deter entry. As r converges to zero, the deterrence monopoly equilibrium profit flow π

converges to zero, which means the posted buying and selling prices converge to the competitive

equilibrium prices p∗.

Proof. See Appendix Subsection B.4. □

Consider an example with two types of buyers and two types of sellers; the mechanism needs

to communicate two prices, a price for buyers and one for sellers, as shown in Figure 2a.

The communication for the quantities is the same as the competitive mechanism, except now

the trades “go through” the market-maker and not the Walrasian auctioneer, as shown in
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Figure 2b. The message space Mm is five-dimensional: two prices and three quantities. More

generally, as stated in Proposition 6, our analysis implies that the dimensional size of the

message space of the allocation mechanism is N + 1, which is only one dimension more than

the competitive mechanism. This occurs because the market-maker posts a pair of prices

instead of only a single price.

Proposition 6. The message space of a monopoly deterrence equilibrium requires one more

dimension than the competitive equilibrium.

Ask
Price
p1s

Bid
Price
p1b

Consumer 1

Consumer 2

Consumer 3

Consumer 4

(a) Prices

y1

y2

y3

Market Clearing

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Market-

Maker

(b) Quantities traded

m =
(
p1b , p

1
s, y1, y2, y3

)
(c) Message

Figure 2: Example of the allocation mechanism of a monopolist market-maker with N = 4

6 Information Size without Intermediation

The competitive mechanism is meant to represent the frictionless limit of strategic price for-

mation. We showed how the price formation mechanisms based on intermediation (where

consumers trade through market-makers) can approximate minimal complexity. In this sec-

tion, we consider the situation where consumers have to meet each other and bargain over

the terms of trade. While these models of random matching and bargaining can arrive at the

competitive allocation as frictions of trade decrease, we will see that they cannot approximate
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the minimal informational complexity of the competitive mechanism. To understand the com-

plexity of a decentralized matching and bargaining process, we use the model from Mortensen

and R. Wright (2002), which is a standard articulation of the modern random matching and

bargaining modeling framework.

6.1 Description of the Matching Environment

Time is continuous, and for tractability, we assume that consumers are either buyers who

are not endowed with the consumption good or sellers who are endowed with one unit of

the consumption good. There are Nb > 0 types of buyers and Ns = N − Nb > 0 types

of sellers, buyer types ib are indexed by ib ∈ {1 . . . , Nb} and seller types is are indexed by

is ∈ {Nb + 1, . . . , N}. Consumers have unit demand for the consumption good.14 Let F and

G be the cumulative distribution functions of valuations of buyers and sellers (the c.d.f. F (x)

is equal to the fraction of buyer types {i}i ∈ {1, . . . , Nb} such that vi ≤ x).

There is a flow of buyers who can enter the market at the rate b > 0 and sellers at the

rate s > 0. Buyers (sellers) then can choose to “enter the market,” which means they can

randomly meet sellers (buyers) and trade. Given populations of buyers B > 0 and sellers

S > 0 participating in the market, they meet according to the matching function M(B,S).

Let the buyer/seller ratio θ = B/S be the market tightness parameter, m(θ) = M(B,S)/S

be the rate a seller meets buyers, and m(θ)/θ be the rate a buyer meets sellers. All agents

discount future payoffs at the rate r ≥ 0, and to participate in the matching process, buyers

have to incur a cost cb ≥ 0, while sellers have to incur a cost cs ≥ 0.

When a buyer and a seller meet, one of the two, randomly chosen, announces a take-it-or-

leave-it price offer. Let ω ∈ (0, 1) be the probability a seller makes the offer. If the other

party rejects the offer, they both continue searching; if the other party accepts the offer, the

exchange occurs, and both exit the market. We study the steady-state search equilibrium

where the flows of buyers and sellers exiting the market are equal to the flows entering so that

the corresponding net trades in the competitive equilibrium have an analogous implementation

in this environment. That means b times the probability the buyers choose to enter is the

14That means a consumer of type i has a utility function ui(x1, x2) defined for the consumption good x1 and
the numeraire good x2. The utility function satisfies ui(x1, x2) = vix1+x2 for x1 ∈ [0, 1] and ui(x1, x2) = vi+x2

for x1 > 1, we call vi the valuation of type i.
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flow of entering buyers in the market, and this flow of entering buyers is equal to the flow of

matchings M(B,S) times the probability they trade and exit. In the steady-state equilibrium,

the flow of sellers entering the market (supply) is also equal to the flow of trades and equal to

the flow of buyers entering the market(demand).

The best strategy for one party is to offer the other party’s reservation value; thus, the seller

offers p = x − Vb(x), the buyer offers p = z + Vs(z), and a transaction occurs if and only if

x− Vb(x) ≥ z + Vs(z). Since the seller makes the offer with probability ω, the expected price

of a transaction is p(x, z) = ω(x− Vb(x)) + (1− ω)(z + Vs(z)), which can be rearranged as

p(x, z) = z + Vs(z) + ω[x− z − Vb(x)− Vs(z)]. (11)

This is the price according to the generalized Nash solution if the seller captures a fraction

ω of the joint surplus given reservation values z + Vs(z) for the seller and x − Vb(x) for the

buyer.

Given the transaction prices, the values of participating in the market can be described as

follows: the expected value of participation in the market for a buyer satisfies

rVb(x) =
m(θ)

θ

∫
max{x− p(x, z)− Vb(x), 0}dΓ(z)− cb, (12)

and the expected value of participation in the market for a seller satisfies

rVs(z) = m(θ)

∫
max{p(x, z)− z − Vs(z), 0}dΦ(x)− cs, (13)

where Γ and Φ are the distributions of seller and buyer types participating in the market.

These distributions differ from the respective exogenous distribution of potential seller and

buyer entrants, G and F , as some types choose not to enter if the expected value of entering

is not positive.

Substituting the right-hand side of equation 11 into equations 12 and 13 yields

rVb(x) + cb =
m(θ)(1− ω)

θ

∫
max{x− z − Vb(x)− Vs(z), 0}dΓ(z) (14)

and

rVs(z) + cs = m(θ)ω

∫
max{x− z − Vb(x)− Vs(z), 0}dΦ(x). (15)
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Equations 14 and 15 show that the value of participating in the market is strictly increasing

in the buyer’s valuations and strictly decreasing in the seller’s valuation. The steady-state

search equilibrium is defined in terms of a pair of marginal types of buyers and sellers (Rb, Rs)

with Rb > Rs, where a buyer with valuation x enters the market if and only if x > Rb, and

the seller with valuation z enters if and only if z < Rs. In a steady-state search equilibrium,

the distribution of types participating in the market is stationary, which implies that: (1) The

measure of entering sellers and buyers must be the same, and therefore the pair of marginal

valuations (Rb, Rs) satisfies the condition sG(Rs) = b[1 − F (Rb)].
15 (2) The distribution of

participating types is constant.

The steady-state search equilibrium is characterized by (Vb, Vs, Rb, Rs,Φ,Γ), the value func-

tions (Vb, Vs), cutoff valuations to participate in the market (Rb, Rs), and the distributions of

participating types (Φ,Γ) of buyers and sellers, respectively. The Appendix section A pro-

vides the characterization of the search equilibrium, showing how it converges to a competitive

equilibrium.

6.2 The Allocation Mechanism in the Search Equilibrium

The allocation mechanism implicit in the search equilibrium (µs,Ms, gs) is constructed as

follows:

In a steady-state equilibrium, there is a constant distribution of types in the market. Therefore,

the distribution of types leaving the market is the same as the distribution of types entering

the market. As all meetings result in trade,16 these distributions are given by (F,G) with the

cutoffs (Rb, Rs).

As prices and allocations depend on who one matches with, the sets of types now include all

pairs of buyer types ib and sellers types is, (ib, is). Let y be a profile of net-trades for each

possible pair of types of buyers and sellers (ib, is). Let y(ib, is) be the net trade for buyer of

type ib that matches sellers of type is and y(is, ib) is the net trade of a seller of type is that

matched with buyer of type ib. Let Y be the set of feasible net trades. Then y ∈ Y is a feasible

15For steady-state equilibrium to exist we need to impose some conditions on the distribution of buyer and
seller types, for example assuming that s = b and that Nb = Ns are sufficient conditions so that we can find
pairs of marginal types that equate supply with demand.

16As shown in the Appendix section A, there exists a r̂ > 0 such that for a discount rate r ≤ r̂ all meetings
result in trade. For simplicity, we focus on steady-state equilibrium with r ≤ r̂.
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profile of net-trades if and only if y(i,j) + wi ∈ X, y(j,i) + wj ∈ X and
∑

(i,j) y(i,j) = (0, 0).

Note that as a steady-state equilibrium might featureRb < min {x(ib)}Nb
ib=1 andRs > max {z(is)}Ns

is=Nb+1;

all types of buyers and sellers participate in the market message space of this allocation mech-

anism must specify a price for each possible pairing of buyers and seller types, which means

that there are Nb ×Ns prices for each pair of buyer-seller types (ib, is).

The message space is:

Ms = {(ps, y) ∈ RNb
+ ×RNs

+ × Y : ps(ib, is)y1(ib, is) + y2(ib, is) = 0 ∀(i, j)}, (16)

where ps(ib, is) is a price assigned for a pair of buyer and seller types. We construct a message

correspondence that is privacy preserving and implements the allocation of the steady-state

search equilibrium.

Let µi
s be a correspondence from the set of environments Ei (here constrained to buyers and

sellers with unit demand) to Ms that satisfies µi
s(e

i) = {(ps, y) ∈ Ms : y(i) = ys(i)}, where

ps(ib, is) is a price for a pair of buyer and seller types (ib, is) and ys(i) is the net-trade in the

steady-state search equilibrium. If i is a buyer of type ib who meets seller is and wants to

trade, which means vib > ps(ib, is), the net trade for type i is given by ys(i) = (1,−ps(ib, is)).

Otherwise, if vib < ps(ib, is) then i does not enter the market, trade does no occur, and

ys(i) = (0, 0).

Define the correspondence µs : E ⇒ Ms by

µs(e) = ∩iµ
i(ei) ∩ (ps(e)× Y ), (17)

where ps(e) is the profile of prices determined by the steady-state search equilibrium in the

environment e for the types that trade in equilibrium (so ps(e, (ib, is)) is the equilibrium price

for a pair of buyer and seller types (ib, is)), for the types that do not trade in equilibrium set

ps(e, (i, is)) = Rb if i is a type of buyer who does not participate in the market for any seller

type is (note that vi < Rb so this type does not trade), and ps(e, (ib, i)) = Rb if i is a type of

seller who does not participate in the market (note that vi > Rs so this type does not trade
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as well).

Note that since buyers and sellers meet randomly and the transaction price depends on the

pair of valuations of buyers and sellers (p(x, z)), prices are not deterministic in the search

equilibrium. However, the distribution of realized transaction prices is deterministic, as there

is a continuum of consumers. Thus any search equilibrium ps implies an equilibrium c.d.f.

of prices P . Also, note that ps(i) > Rs if ci ≤ Rs and ps(i) < Rb if vi ≥ Rb since prices

must compensate for search costs, while consumers who do not trade are the types with

costs/valuations in (Rs, Rb).

Finally, let the outcome function gs satisfy gs(p, y) = y, it is a projection from Ms to Y .

6.3 Size of the Message Space

The profile of prices and net trades is a higher dimensional object than under the competitive

mechanism. To see this, consider an economy with an even number of N types, with N/2

types of potential buyers and N/2 types of potential sellers. For the matching and bargaining

mechanism in this economy, we need to specify a different price for each pair of types (ib,s ),

so there are (N/2)2 prices for the indivisible good. For the quantities traded, once we have

specified the quantity bought by a buyer of type ib from a seller of type is, we have also defined

the quantity sold by is to ib. The market clearing condition applies for each pair of trades

in the matching environment. Therefore, the message space is (N/2)2 for quantities traded.

Therefore, the matching mechanism message space Ms is 2(N/2)2 dimensional as stated in

Lemma 2 below:

Lemma 2. The matching mechanism message space MN
s is a 2(N/2)2 dimensional.

Proof. See Appendix Subsection B.5 □

Combining Lemma 1, which shows that the competitive mechanism message space is N di-

mensional, and 2, which shows that the matching mechanism message space is 2(N/2)2 dimen-

sional, we can see that difference between the matching and competitive mechanisms diverges

to infinity as N increases. This is stated as Proposition 7.

Proposition 7. As N → ∞ the ratio of the dimensional size of MN
s to MN

c diverges to

infinity.
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m = (p(1, 1), p(1, 2), p(2, 1), p(2, 2), y(1, 1), y(1, 2), y(2, 1), p(2, 2))

(c) Message

Figure 3: Example Matching Mechanism with N = 4 types of consumers categorized as buyers
and sellers.

While Mortensen and R. Wright (2002) show that as the frictions of trade decrease, the

distribution of prices across transitions converges to the competitive price, so the matching

and bargaining allocation mechanism converges to the competitive mechanism in terms of

allocation. However, it does not approximate it in terms of complexity. In other words, the

matching and bargaining mechanism requires that each market participant be aware of all

types of participants operating in the market to form expectations regarding payoffs from

participating in the market and bargaining with the other participants. This is precisely the

inverse of the intuition regarding the minimum informational complexity of the competitive

market: that each market participant can use prices to substitute for the information regarding

other agents they would otherwise require to allocate resources.

To visualize why the message space is larger for a random matching and bargaining mechanism

than the competitive mechanism, consider our previous example with four types of consumers,

partitioned into two types of buyers and two types of sellers. For the random matching and

bargaining mechanism, the oracle now needs to communicate a price for each pair of possible

trades, as shown in Figure 3a. She also needs to communicate the quantity traded for each

pair, as shown in Figure 3b. Combined, the message space for the search mechanism is

8-dimensional: four prices (one price for each possible pair of buyers and sellers) and four
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quantities (the quantity sold by the seller to the buyer for each possible pair).

7 Concluding Remarks

We argued that an important factor to consider when evaluating allocation mechanisms is

the degree of informational complexity. For example, one justification for using competitive

models is that people need such little information to implement a competitive equilibrium.17

The size of the messages needed to implement an allocation is an elegant measure of the

informational burden placed on the agents in the model. Economists have proved that the

competitive allocation mechanism is the only allocation mechanism that minimizes informa-

tional complexity. However, as the model of perfect competition assumes that prices are not

set by rational agents but are determined as the prices that “equate supply with demand,”

models of strategic price formation mechanisms are needed to provide strategic foundations

for the concept of competitive equilibrium. Thus, we studied informational complexity in

allocation mechanisms where the terms of trade are set by strategic agents. We studied two

such mechanisms: an allocation mechanism with intermediation (market-maker model) and

an allocation mechanism without intermediation (a random matching and bargaining mecha-

nism).

Models of random matching and bargaining have been extensively studied as explanations for

how competitive equilibrium allocations might be approximated as frictions of trade decrease

(Gale 2000,Mortensen and R. Wright 2002). However, we showed that a random matching

mechanism is extremely complex in terms of information: every agent must be able to search

across all the people in the economy to find trading partners, so each individual agent must

have a complete model of the economy. Thus, it fails to provide strategic foundations for the

minimal informational complexity that characterizes the competitive equilibrium.

In contrast, we proposed a strategic allocation mechanism where market-makers intermediate

trade. The market-maker mechanism requires almost as little information as the competitive

allocation, even when it is used to explain deviations from the competitive allocation. This

17The model also needs to fit the data, which, for the competitive model, is most clearly seen from experimen-
tal data Smith (1982), Friedman (1984), Friedman and Ostroy (1995), Shachat and Zhang (2017), Martinelli,
Wang, and Zheng (2023), and Al–Ubaydli, Boettke, and Brian C Albrecht (2022).
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low informational complexity is one possible reason we observe intermediaries facilitating trade

between individual sellers and individual buyers: if traders only need to be aware of a few

intermediaries for each good they purchase, the informational requirements are much smaller

than if traders need to form a model of the whole market before engaging in search and

bargaining for their consumption bundle.18
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A Appendix: Characterization of Equilibrium in the Random

Matching Economy

The equilibrium of the random matching and bargaining model approximates the frictionless

limit when search costs converge to zero (where the Law of One Price holds). To see this,

notice that as the discount rate r goes to zero, the left-hand side of 14 does not depend on the

buyer’s valuation x. Thus, the variation of the left-hand side with regard to x converges to

zero as r → 0, which implies that x − Vb(x) converges to a constant as r → 0. In particular,

for the marginal buyer type Rb we know that V (Rb) = 0; thus, this constant is Rb. Therefore,

x − Vb(x) = Rb for x ≥ Rb when r = 0. Analogously for the seller case, y + Vs(z) = Rs for

y ≤ Rs, which from equation 11 implies that p(x, z) is constant on x and y.

Thus, the Law of One Price holds when the discount rate is zero. That is, if consumers do not

discount future payoffs, their expected value in participating in the market is the expected
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surplus from the future transaction, which varies by the same amount as their valuation.

An increase in ϵ > 0 in a buyer’s valuation implies an increase in ϵ in their valuation from

participating in the market, so x − Vb(x) is constant, and prices are constant in regard to

buyers and sellers valuations.

In the frictionless case, as the joint surplus from a meeting is constant

[x− z − Vb(x)− Vs(z)] = Rb −Rs. (18)

Substituting this expression in equations 14 and 15 when r = 0 yields

cb =
m(θ)(1− ω)

θ
max{Rb −Rs, 0} (19)

cs = m(θ)ωmax{Rb −Rs, 0}, (20)

and so Rb > Rs. This means that among consumers in the market, any buyer’s valuation

is higher than any seller’s valuation. Therefore, all meetings result in trade since there is no

point in searching for other trade opportunities since they are all executed at the same price.

In this case, the Law of One Price holds, and substituting equation 18 and y + Vs(z) = Rs

into equation 11 we find the equilibrium price:

p̂ = ωRb + (1− ω)Rs. (21)

If search costs (cb, cs) converge to zero, then p̂ converges to the competitive price and Rs, Rb

both converge to the same value R, which is the competitive equilibrium price p∗. In terms

of quantity traded, the search equilibrium allocation also converges to sG(p∗), which is the

quantity sold in competitive equilibrium.

As equations 14 and 15 are continuous on r, if search costs cb, cs are strictly positive and

r is lower than some threshold r̂ > 0, then all meetings result in trade. This implies that

the steady-state equilibrium distribution of operating types (Φ,Γ) is given by the densities of

(F,G) on the types who participate (v ≥ Rb, c ≤ Rs). For r ∈ (0, r̂), all meetings result in

trade and there is price dispersion as p(x, z) varies with x and y.

To solve for the equilibrium in this case, note that since all meetings result in trade, which

implies max{x− z− Vb(x)− Vs(z), 0} = x− z− Vb(x)− Vs(z). If we substitute in equation 14

and differentiate with respect to x, we have that V ′
b (x) = (1 − ω)m(θ)/[rθ + (1 − ω)], which

is constant. Therefore, Vb(x) is linear and setting V ′
b (Rb) = 0 yields the intercept. Using an

analogous procedure, we can solve for Vs(z). Therefore, we have
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Vb =
(1− ω)m(θ)

(1− ω)m(θ) + rθ
(x−Rb), (22)

Vs =
ωm(θ)

ωm(θ) + r
(Rs − z). (23)

Substituting into equation 11 yields the equilibrium price for the transaction:

p(x, z) = ω

[
rθx+ (1− ω)m(θ)Rb

rθ + (1− ω)m(θ)

]
+ (1− ω)

[
ry + ωm(θ)Rs

ωm(θ) + r

]
. (24)

To solve for the set of equilibria where all meetings result in trade, we need to determine

(r̂, Rs, Rb). The market-clearing condition that Rs and Rb must satisfy is

G(Rs) = [1− F (Rb)]. (25)

Finally, to find Rs and Rb, substitute equation 22 into 14, which gives

cbθ

m(θ)
= (1− ω)

∫ [
Rb −

ry − ωm(θ)Rs

r + ωm(θ)

]
dΓ(z). (26)

In the steady-state when all meetings result in trade, the distributions of participating types

are Γ(z) = G(z)/G(Rs) and Φ(z) = F (x)/[1− F (Rb)], and so

cbθ

m(θ)
= (1− ω)

∫ [
Rb −

ry − ωm(θ)Rs

r + ωm(θ)

]
dG(z)

G(Rs)
. (27)

Similarly, substituting equation 23 into 13 yields

cs
m(θ)

= ω

∫ [
−Rs −

rθx+ (1− ω)m(θ)Rs

rθ + (1− ω)m(θ)

]
dF (z)

F (Rs)
. (28)

These two equations combined with the market-clearing condition determines (θ,Rs, Rb).

Mortensen and R. Wright (2002) show that there is a unique r̂ such that every meeting

results in trade if and only if r < r̂. The condition that every meeting results in trade keeps

the model easily tractable with positive search costs and price dispersion in equilibrium.

As shown in Mortensen and R. Wright (2002), as the discount rate r and the search costs

(cb, cs) both converge to zero, then the search equilibrium prices all converge to p∗ and that the

search equilibrium converges to the competitive equilibrium. Then, as it is the same allocation

mechanism as the competitive equilibrium (as all trades occur at the competitive price),

it is informationally efficient at this frictionless limit. We are interested in the allocations

implemented by this mechanism away from the limit.
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B Appendix: Proofs

B.1 Proof of Lemma 1

Proof. Using the conditions of market-clearing,
∑k

i=1 yi=0 and budged balance, py1 = 0, ∀i,
implies that the function (p, y) → (p, ỹ) ∈ R++ × RN−1

++ , where for 1 ≤ i ≤ N − 1, ỹi1 = yi, is

a C∞-diffeomorphism. Thus, Mk
c is a (N − 1) + 1 = N -dimensional manifold. □

B.2 Proof of Proposition 1

Proof. Posting the competitive price is a Nash equilibrium as it yields zero profits, and a

deviation either gives negative profits (if purchase prices are higher than p∗ and for selling are

lower than p∗) or zero profits (in the case the purchase prices are lower than p∗ and for selling

are higher than p∗). To see that it is the unique Nash equilibrium, suppose for a contradiction

it is not. There exists another Nash equilibrium where market-makers post prices to make

strictly positive profits. Other market-makers could deviate and make profits by capturing

the customers of competitor market-maker by posting more attractive bid and ask prices. □

B.3 Proof of Proposition 2

Proof. Part 1. Existence and characterization:

As accessibility is independent, the competitive equilibrium price p∗ is also the competitive

equilibrium price for the subset of traders who have access to a market-maker. To construct

the candidate equilibrium strategy profile {P j}j∈J , we consider pricing strategies described

by a pair (pb, ps) of offers to buy and sell the good by the market-maker where pb ≤ p∗ ≤ ps.

First, consider the monopoly prices pM = (pMb , pMs ) which satisfies the monopolist market-

maker problem (which is to maximize profits given by equation 5 subject to the constraint

described in equation 6). If there are multiple profit-maximizing pairs of monopoly prices, let

(pMb , pMs ) be the pair of monopoly prices with the lowest difference between the buying and

selling price that clears the market.

Let j be the market-maker with the largest accessibility parameter: (mj = max{mj}j∈J). Let

α =
∏
h̸=j

(1−mh),

and let ΠM be the monopoly profit (that is, the profits of a market-maker posting the monopoly

prices in a situation of monopoly). Consider a function p : [0, 1] → R2
+ such that p(α) =
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(pb(α), ps(α)) is a pair of prices that satisfies

π(pb(α), ps(α)) = αΠM , (29)

and satisfies market clearing constraint (described in equation 6).

That is, (pb(α), ps(α)) is the pair of prices that implements a feasible net trade for a monopolist

market-maker and yields a fraction α of the monopoly profits. In addition, if for some α ∈ [0, 1]

there is more than one such pair of prices, then (pb(α), ps(α)) is the pair with the smallest

difference between the buying and selling prices.

This is stated formally as follows: for each α ∈ [0, 1], the prices (pb(α), ps(α)) satisfy

(pb(α), ps(α)) = argmin
(b,s)

{|ps − pb| : (ps, pb) satisfies equations 6, 29}.

The existence of at least one pair of prices that satisfies equations 6 and 29 follows from the

continuity of consumer demand.

Note also that if a pair of prices is feasible for a monopolist market-maker, then such a pair

of prices is also feasible for a market-maker competing with other market-makers. To see this,

consider two market-makers in competition. Suppose each market-maker j ∈ 1, 2 posts a pair

of bid and ask prices p(αj) for some αj ∈ [0, 1]. If α1 < α2, 1 is posting lower ask prices and

higher bid prices, and consumers who are aware of both market-makers prefer to trade with

1. Since consumer’s preferences are independently distributed from consumer accessibility,

the quantities supplied and demanded from 2 fall in the same proportion (both supply and

demand from market-maker 2 decreases by a fraction of m1), so market-clearing still holds.

The candidate equilibrium strategy profile {Pj}j∈J is a profile of cumulative distribution

functions on [α, 1]; Pj(α) is the probability that buying (selling) prices higher (lower) than

pb(α)(ps(α)) and that satisfies the equal profit condition∏
h̸=j

(1− Ph(α)m
h)π(ps(α), pb(α)) = αΠM , (30)

where pi(ps, pb) is given by 5. Note that

1−mh︸ ︷︷ ︸
Prob. h/∈Ai

+ [1− Ph(α)]m
h︸ ︷︷ ︸

Prob.h∈Ai and (phb<pb(α) or phs>ps(α))

= 1− Ph(α)m
h, (31)

is the probability that a consumer chooses to transact with the market-maker j over competitor

h and α
sΠ

M is the profit margin of a market-maker when posting prices at the minimum

profitability level (lower bound for sales, upper bound for purchases), which means its selling

(buying) prices undercuts (tops) all competitors’. Also note that equation 30 implies that

35



Ph(α) = 0 as [ps(α)− pb(α)]G[pb(α)] = αΠM .

To check that this is an equilibrium, note that any prices not in the support of equilibrium

strategies P = {(pb(α), ps(α)) : α ∈ [α, 1]} lead to strictly lower profits: If we consider prices

(pb(α), ps(α)) that satisfy equations 29 and 6 defined for α < α, profits are strictly lower by

construction. For prices (pb, ps) ∈ [pMb , pb(α)]× [ps(α), p
M
s ]∩P, they either yield strictly lower

profits because they are undercut by prices which would achieve similar profitability in the

case the market-maker were a monopolist, or they are not feasible (that is, the market-maker

promises to sell more than it purchases).

Given the sharing rule, it is easy to check that profits are constant on the support of {P j}
for each j. If there is only one market-maker j with the largest accessibility parameter mj ,

then the equal profit condition (equation 30) implies that there is an atom of probability in

the mixed strategy of the largest market-maker at the monopoly price, P j(pM ). The sharing

rule implies that consumers always choose to trade with h ̸= j if h posts the monopoly prices

pM , hence its profits do not fall discontinuously on the support of the equilibrium strategy

[α, 1] as p(α) → pM .

Part 2. Uniqueness:

Note that any feasible pricing strategy for the market-maker must be consistent with market

clearing. Note that by construction, the pricing strategies on the set of pairs of prices {p(a) :
a ∈ [0, 1]} are weakly dominant, as any feasible pricing strategy (pb, ps) yields the same profits

as a strategy p(a) for some a ∈ [0, 1], then sellers and buyers prefer the buying and selling prices

p(a). Therefore, for any market-maker posting a pair of prices (pb, ps) /∈ {p(a) : a ∈ [0, 1]}
cannot be a best response to a best response. Hence, any candidate for Nash equilibrium

consists of distributions over prices in {p(a) : a ∈ [0, 1]}.

Because we are restricted in our candidate equilibrium strategies to prices in {p(a) : a ∈ [0, 1]},
the proof of uniqueness of equilibrium is a proof of uniqueness over distributions on [0, 1].

Consider an equilibrium strategy profile F , undercutting arguments imply that F = {F j}j∈J
is non-degenerate and the upper bound of the support for at least a pair of market-makers

must include the monopoly price. The union of the supports for the strategies must be convex;

otherwise, market-makers could increase profits by posting prices in the complement of the

support. Additionally, the supports for the mixed strategies of individual market-makers must

be convex; otherwise, the equal-profit condition will be violated. Note that there cannot be

atoms at a lower bound of the support of equilibrium price distributions. If there are no atoms

at the lower bound of the support of the distribution, the lower bound of the supports for any

pair of market-maker must be the same if the interiors of the supports overlap. This implies

that equilibrium strategies for all seller types have convex supports.
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As any equilibrium in this environment with mixed pricing strategies satisfies the equal profit

condition, the discussion in the preceding paragraph implies that Eq. 30 characterizes any

equilibrium where the interiors of the supports of the price distributions overlap. This implies

this set of equilibria is unique. To finish the proof, it remains to show that for any pair of

market-makers, the interior of the support of mixed pricing strategies must overlap.

To see that suppose, without loss of generality, that there is an equilibrium strategy profile

P such that there is a pair of market-makers j, j′ with the same accessibility parameter

0 < mj = mj′ < mk who compete against each other posting prices according to a strategy

that is described by pair of distributions P j , P j′ on [0, 1] and the price posting function p that

maps [0, 1] into pairs of buying and selling prices. The distributions P j , P j′ have the same

support [α∗, α∗] while all other market-makers post prices according to distributions that have

their supports in [α, 1] with α = α∗. In words, market-makers j and j′ compete by posting

strictly more attractive prices to buyers and sellers than all others. LetK be the market-maker

with largest accessibility parameter in the subset of market-makers Ĵ = J − {j, j′}.

Let Πo(α) be the equilibrium profits per unit of accessibility of market-maker o in posting

prices p(α); we call that o’s equilibrium ”profitability.” Since α∗ = α, the profitability of

market-maker j of posting prices p(α∗) is

Πj(α∗)/mj = (1−mj′)α∗ΠM . (32)

If market-maker o ̸= j, j′ posts prices p(α), its equilibrium profitability is

Πo(α) = (1−mj′)(1−mj)αΠM . (33)

Note that α = α∗, and therefore the equal-profit condition for j and equation 32 imply that

α∗ = (1−mj′)α. (34)

Finally, equations 33 and 34 together imply that for market-maker o ̸= j, j′ that its profitability

in posting prices p(α∗) satisfies

Πo(α∗) = α∗ΠM (35)

= (1−mj′)αΠM > (1−mj′)(1−mj)αΠM (36)

= Πo(α). (37)
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The inequality 36 is a contradiction with P being an equilibrium. Therefore, in equilibrium,

the interior of the supports must overlap.

Hence, the pricing strategy described by {Pj}j∈J is the unique Nash equilibrium given the

sharing rule that the market-maker with the smaller accessibility parameter mj has priority

in transactions to buyers and sellers in the case of a tie in prices. □

B.4 Proof of Proposition 5

Proof. As in the proof of proposition 2, let ΠM be the monopoly profit rate. Consider a profit

rate π ∈ (0,ΠM ) (in slight abuse of notation), and suppose the incumbent 1 considers posting

prices p(π) = (pb(π), ps(π)), which is the pair of bid and ask prices with the smallest difference

that satisfies π(pb(π), ps(π)) = π. The pricing strategy, p(π), yields a payoff of π × mj , if j

is a monopolist. We will say a firm ”undercuts” by posting a pair of bid and ask prices p(π̂)

with π̂ < π, thus pb(π̂) > pb(π) and ps(π̂) < ps(π).

First, for simplicity, we consider the case where agents are myopic and only care about present

payoffs. Then, we extend the equilibrium to the case when agents care about future payoffs.

Step 1: One period deterrence game

In this case, agents are myopic and only care about present payoffs so that the discount factor

β = 1
1+r = 0. In this case, the deterrence game has only one period. For π ≤ E/me, if the

incumbent posts p(π), then the cost of entry E is higher than the profits 2 can make after

entry by undercutting 1 with higher bid and lower ask prices. Therefore, 2 does not enter if

1 posts p.

Therefore, if the incumbent posts p(π) for π = E/me (the highest profit margin that deters

entry) and the entrant is playing ”no entry,” this is an equilibrium if 1 has no incentive to

deviate. Clearly, 1’s profits decrease with a lower bid-ask spread than π = E/me, so there is

no incentive for 1 to deviate by posting more attractive prices to the consumers. While prices

p(π′) for π′ > π = E/me imply that 2 can make profits higher than E/me if 2 enters and

undercuts 1. Thus, 1 has no incentive to deviate in pure strategies.

It remains to show that 1 finds it more profitable to deter entry than to compete with 2 in

mixed strategies, as described in Proposition 2. Note that the profit that 1 makes in the mixed

strategy equilibrium with both market-makers operating is (1 −me)π
M . The profit 1 makes

with entry deterrence strategy is E/me, thus if the entry cost E is high enough so that

E/me > (1−me)π
M (38)

the market-maker 1 finds it profitable to deter entry. Note also, that me(1 −me)π
M are the
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profits of 2 if they enter and compete in mixed strategies with 1, thus if E > me(1−me)π
M ,

2 does not want to enter the market even if 1 plays the mixed strategy of the equilibrium

where both market-makers compete. If E ≤ me(1 −me), 2 finds it a best response to enter

the market and compete with 1 if 1 is playing the mixed strategy, and 1’s profits in the mixed

strategy equilibrium are equal or higher than profit π = E/me of the deterrence strategy.

Therefore, the deterrence strategy p(π) for π = E/me for 1 and 2 chooses to not enter is the

only equilibrium if and only if E > me(1−me)π
M .

Step 2: Infinite horizon deterrence game

The one period case can be extended to a dynamic environment. Agents have a common

discount factor β ∈ (0, 1). Then, payoffs of 1 and 2 playing the mixed pricing strategies in the

Markov perfect equilibrium after entry are, respectively

U1
e =

∞∑
t=0

βt(1−m2
t )π

M , (39)

U2
e =

∞∑
t=0

βtm2
t (1−m2

t )π
M , (40)

where t is the number of periods after the entry. Therefore, {m2
t }t is the sequence of accessi-

bility parameters for 2 that satisfies equation 10 for t > 0 and m2
0 = me.

Suppose the monopolist can only choose a fixed pricing schedule, posting p(π), π ∈ [0, πM ]

in every period. The present value of 2’s profits conditional on entry when 1 is following its

commitment p(π) is bounded above by

U2
d (π) =

∞∑
t=0

βtm2
tπ.

To deter entry, π must imply that U2
e (π) ≤ E. Consider the profit-maximizing strategy of

entry deterrence π that satisfies U2
e (π) = E, substituting for B.4 and rearranging imply that

π = E/
(∑∞

t=0 β
tm2

t

)
. Thus, payoffs for the deterrence strategy for 1 are

U1
d =

π

(1− β)
=

E

(1− β)
(∑∞

t=0 β
tm2

t

) (41)

In equilibrium with entry deterrence the monopolist must find deterring entry profitable:

U1
d ≥ U1

e . Clearly, equation 41 implies that for an entry cost E high enough U1
d > U1

e .

By assumption, m2
t converges to 1 at a fast enough rate so that

∞∑
t=0

(1−m2
t ) ≤ C.
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Now take a sequence {βn} such that limβn = 1. Let (U1
d (βn), U

2
d (βn), U

1
e (βn), U

2
e (βn)) be

the corresponding payoffs for 1 and 2 in deterrence and in the equilibrium with entry at the

discount rate βn. Let {πn}n, with

πn = E/

( ∞∑
t=0

βt
nm

2
t

)
(42)

for each n, be the corresponding sequence of candidate deterrence equilibrium profit margins

for the monopolist.

Set the entry cost E ≥ C × πM . Then profits of 1 and 2 if both enter and play the mixed

strategy equilibrium are bounded up by CπM , and so 2’s profits are always lower than the

entry costs. Therefore, if 1 sets bid and ask prices πn, 2 finds it optimal not to enter. Without

entry, equation 41 implies that profits for 1, U1
d (βn) are greater than E. Thus, if E ≥ C×πM ,

the unique equilibrium is for 1 to deter entry, analogously to the one period case. Note that∑
t(1 − m2

t ) ≤ C and Eq. 42 imply that π → 0 as β → 1 and therefore p(π) converges to

ps = pb = p∗ as the discount rate r falls to zero and the equilibrium allocation must converge

to the competitive equilibrium.

Finally, relax the restriction that the monopolist is restricted to posting the same bid and ask

prices for every period but chooses a sequence of bid and ask prices. Then, the overall situation

is similar: the monopolist chooses a sequence of profit shares {πt}∞t=0 with corresponding

sequence of pairs of bid and ask prices p(πt). To deter entry the sequence {πt} must satisfy

∑
βtm2

tπt ≥ U2
e , (43)

the profits of the monopolist under this strategy are

U1
d =

∑
βtπt. (44)

The profit-maximizing strategy for the monopolist is to choose, out of the sequences that

satisfy the deterrence condition 43, the one that maximizes equation 44. Given that m2
t →

1 and is strictly increasing, there is a unique profit-maximizing sequence {πt}, where the

monopolist ”frontloads” by extracting the highest profits in the early periods as the entrant’s

profits from undercutting are relatively constrained by m2
t being smaller than in later periods

from taking advantage of these higher margins. These profits are strictly higher than the

profits from the strategy to commit to constant prices (π/(1−β)), and therefore the previous

arguments also apply in this case. □

40



B.5 Proof of Lemma 2

Proof. With N/2 types of buyers and N/2 types of sellers, the price vector of the steady-state

search equilibrium has (N/2)2 dimensions (as prices are defined for pairs of buyers and sellers),

while Y s has (N/2)2 dimensions. By analogous argument as for the competitive mechanism

in Lemma 1, Ms is a 2(N/2)2-dimensional manifold. □
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