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1 Introduction

Economists have long noted that competitive markets exhaust all gains from trade;
that is, competitive markets are Pareto efficient.This paper studies a second argu-
ment economists have used to argue that markets are desirable. Market prices
communicate all the relevant information dispersed throughout the economy; that
is, competitive markets are informationally efficient. To use the famous example
from Hayek (1945, p. 526), when the price of tin increases, "All that the users of tin
need to know is that some of the tin they used to consume is now more profitably
employed elsewhere." Knowing that a shift in either supply or demand caused the
price increase would be redundant information for the tin user; the price provides
all the information regarding market conditions that the user needs. Our paper
argues that the intermediating agent who sets prices plays a fundamental role in
a market economy by allowing other agents to economize on information through
an intellectual division of labor.

Mount and Reiter (1974), Hurwicz (1977b), and Jordan (1982) proved that com-
petitive markets, where agents take prices as given, are informationally efficient.
However, as Gale (2000) and others have asked: "who sets the prices?" Instead of
interpreting the model competitive equilibrium as a literal description of the econ-
omy, we should see the competitive equilibrium as a simplified representation of
an economy where prices are strategically determined, the frictions of trade are
low, and the number of agents is high. Building on this work on strategic foun-
dations for competitive equilibrium, we argue that we should think of markets
as being informationally efficient only if we can model markets where agents ex-
plicitly set prices to approximate informational efficiency. Therefore, our paper
studies informational efficiency in markets with strategic price-setters and without
the Walrasian auctioneer. Our contribution is to show that a decentralized market
needs some agents that act as intermediaries between traders to approximate the
informational efficiency of the competitive equilibrium.

To study markets with strategic agents, we need to incorporate the market mi-
crostructure explicitly and model any intermediaries and other institutions that
facilitate trade (Spulber 1996b, p. 135). Following the market microstructure litera-
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ture (Gehrig 1993; Spulber 1996a, 2002; Rust and Hall 2003), we compare two forms
of trade that we observe in the world: direct trade between buyers and sellers and
indirect trade mediated through explicit market-making firms or institutions (such
as the stock market). In this paper, we prove informational efficiency results–one
positive and one negative–for these two markets.

First, we prove that a market microstructure with intermediaries that we call
market-makers can approximate the informational efficiency of the competitive
mechanism. We study a model of price formation with strategic market-makers
who intermediate trade between buyers and sellers.1 We show that a model of ex-
change through intermediaries can approximate the informational efficiency prop-
erties of the competitive equilibrium. Because most agents are not market-makers,
buyers and sellers can act as they do in the competitive mechanism and use prices
as a sufficient statistic. The size of the message space needed to implement the
equilibrium allocations grows at only O (N), where N is the number of types in
the economy, which is the same order as the competitive model.

We then extend the general market-maker model to a dynamic setting with a
monopoly market-maker. Other potential market-makers can pay a fixed cost to
enter, and the market is contestable (Baumol 1982). In equilibrium, the monopoly
incumbent will deter entry and set all prices like the Walrasian auctioneer. Un-
like the auctioneer, the market-maker is strategic, and prices are endogenous. The
downside is that, with positive frictions, there are different bid and ask prices for
the good instead of the single price from the auctioneer. The spread means that
to implement the market-maker allocation, the message space requires only one
more dimension than the uniquely informationally efficient competitive market,
making an economy with a monopoly market-maker second-best compared to the
competitive market.

In our model, buyers and sellers outsource the price formation process to in-

1. This model has similarities with the intermediation models of Gehrig (1993), Spulber (1996a,
1996b), and Rust and Hall (2003). Following Rust and Hall (2003), we use the term market-maker
because they operate an exchange. There are many subtleties of the market microstructure that
we do not study. For example, we do not address the difference between being a merchant or a
platform (Hagiu 2009) or a marketplace or a reseller (Hagiu and Wright 2015). See Spulber (2019)
for a recent discussion.
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termediaries. With positive trade frictions, the market-makers profit by extracting
part of the surplus of the gains from trade. These market-makers are arbitrageurs
who can buy low, sell high, and exploit opportunities other actors do not see.2 As
trade frictions go to zero, the market-makers still economize on information for the
other agents, but the arbitrage opportunities disappear, market-makers no longer
make any profits, and the allocation converges to the competitive allocation.3

Given that the market-maker microstructure is approximately informationally
efficient, it is natural to ask whether that is a feature of other microstructures.
Our second result shows that the answer is no: We show that a standard, ran-
dom matching model, as articulated in Mortensen and Wright (2002), is unattrac-
tive from an informational efficiency perspective. If matching frictions are small,
the random matching mechanism is approximately competitive and, therefore, ap-
proximately efficient from an allocative perspective. However, matching remains
inefficient from an informational perspective. We show that the random matching
and bargaining allocation mechanism requires infinitely more information than
the competitive mechanism as the types of agents in an economy grows. Random
matching is informationally inefficient because each participating agent needs to
have an exhaustive picture of market conditions. For example, if there are N types
of buyers and N types of sellers who trade one good, the message space must in-
clude k2 prices. Therefore, the size of the message space grows at O

(
k2): Random

matching may be too informationally complex in large economies to be practical.
The rest of the paper is structured as follows: Section 2 discusses related liter-

ature. Section 3 lays out the abstract environment within which we will consider
the specific mechanisms. Section 4 explains the baseline competitive mechanism.
We then construct our market-maker in Section 5. Section 5.6 develops a dynamic
model with a monopoly market-maker. Section 6 describes the matching and bar-
gaining mechanism and includes our result on informational inefficiency, and Sec-
tion 7 concludes.

2. Following Kirzner (1973, pp. 14-6), there is a literature that calls these market-makers "en-
trepreneurs" who "discover" profit opportunities in the market.

3. The formal connection between no-arbitrage and competitive equilibrium is well understood
in the case of product markets (e.g., Makowski and Ostroy 1998) and financial markets (e.g., Werner
1987).

4



2 Related Literature on Informational Efficiency and

the Foundations of Competitive Equilibria

As Vernon Smith (2015) recalled, "In the 1950s and ’60s, our expectation was that
complete information was necessary for equilibrium of supply and demand." This
turned out to be false. First, early experiments showed that with proper trading
rules, competitive outcomes emerge even with "strict privacy wherein each buyer
in a market knows only his/her own valuation of units of a commodity, and each
seller knows only his/her own cost of the units that might be sold" (Smith 1982).
Vernon Smith (1982) called this concept the "Hayek Hypothesis."

Then, the formal articulations of the Hayek Hypothesis (e.g., Mount and Reiter
1974; Hurwicz 1977b, 1977c; Jordan 1982) have shown that competitive markets–
decision makers take prices as a given and prices equate supply with demand,
contrary to requiring complete information–require minimal information.4 Every
agent can be unaware of most of the economy, and their preferences are private.
Mount and Reiter (1974) showed that competitive equilibria are informationally
efficient in the sense that competitive prices communicate the minimum amount
of information necessary to implement a Pareto efficient allocation in an environ-
ment where information is dispersed. Jordan (1982) proved that competitive prices
are the unique decentralized mechanism that achieves informational efficiency and
satisfies the individual rationality constraint: Jovanovic (1982) showed that for any
allocation mechanism that satisfies the individual rationality constraint (which he
defined as "non-coercive"), implements a Pareto efficient allocation, and is infor-
mationally efficient, then that mechanism is the competitive allocation mechanism,
that is, the mechanism implements the competitive equilibrium allocation. Thus,
Mount and Reiter (1974) showed the analogous result to the first welfare theorem
for informational efficiency, and Jovanovic (1982) showed the analogous concept
to the second welfare theorem for information efficiency.5

4. See Maskin (2015) for a summary of the connections between Hayek’s work and informational
efficiency.

5. Sato (1981) and Tian (2004) extended informational efficiency results to convex economies
with public goods and externalities. More recently, Nisan and Segal (2006) extended this literature
to non-convex economies and the analysis of the allocation of indivisible goods.
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Throughout the paper, we focus on informational efficiency in the sense of the
size of the message space.6 The size of the messages is interpreted as a measure of
the complexity of a verification protocol. As Segal (2010, p. 228) explains

[I]magine an omniscient oracle who knows the agents’ valuations and
consequently the optimal allocation(s) but needs to prove to an ignorant
outsider that an allocation x is [a solution]. The oracle does this by
publicly announcing a message m ∈ M. Each agent i either accepts
or rejects the message, doing this on the basis of his own type. The
acceptance of message m by all agents must verify to the outsider that
allocation x is optimal.

For example, the original papers on informational efficiency focused on a Wal-
rasian equilibrium, which can be interpreted through the lens of a verification pro-
tocol. As Segal (2010, p. 229) further explains, "The role of the oracle is played
by the ‘Walrasian auctioneer’ who announces the equilibrium prices and alloca-
tion. Each agent accepts the announcement if and only if his announced allocation
constitutes his optimal choice from the budget set delineated by the announced
prices." Thus, the agents verify the equilibrium.

Informational efficiency is a relevant metric to judge allocation mechanisms
if decision-makers are constrained by the quantity of information they can in-
corporate into their decision-making process. In conventional economic theory,
decision-makers maximize their utility regardless of the complexity of their deci-
sion problem. In contrast, if agents are boundedly rational (Selten 2001) or have
rational inattention (Caplin and Dean 2015; Maćkowiak, Matějka, and Wiederholt
2020), the amount of information matters. Recent work has explicitly incorporated
these limitations when evaluating alternative mechanisms (Li 2017; Oprea 2020).
The Hayek Hypothesis suggests that markets are desirable institutions not because

6. Informational efficiency as the "minimal message space" should not be confused with infor-
mational efficiency in the sense of "information aggregation," as used in papers such as Grossman
and Stiglitz (1980), Vives (1995), Boehmer and Kelley (2009), and Lauermann and Wolinsky (2016).
Although both notions trace back to ideas in Hayek (1945), they are distinct; efficient information
aggregation refers to the concept that the market prices for assets incorporate all the information
available to market participants. We do not address information aggregation in this paper.
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humans are perfectly rational instantaneous utility maximizers but because they
are not. While we do not explicitly model any cognitive constraints, our results
suggest market-makers are desirable as means to reduce cognitive costs.

Separate from the informational efficiency literature, there is a large literature
on strategic foundations for competitive equilibrium (Gale 2000). Under various
market microstructures, the strategic equilibrium of decentralized economies gen-
erates the same allocation as the competitive equilibrium. Therefore, the compet-
itive equilibrium can be thought of as a convenient shortcut for the more compli-
cated, decentralized process. Our paper shows informational efficiency can only
be approximated by specific market microstructures. Not all models that provide
strategic foundations for competitive equilibrium also approximate the informa-
tional efficiency of competitive equilibrium. The random matching and bargain-
ing model is one popular explanation for economists to expect competitive allo-
cations as frictions of trade are low (Gale 1986a, 1986b), but a random matching
and bargaining equilibrium requires much more information than a competitive
equilibrium. Thus, matching markets can implement allocations approximately
competitive when frictions are low, but they cannot describe the informational ef-
ficiency that is understood to be a feature of markets.

3 Environment

In this section, we define our physical environment and abstract allocation mech-
anisms. In the next sections, we describe three specific allocation mechanisms and
their properties in terms of informational efficiency: the competitive market in
Section 4, the market-maker mechanism in Section 5, and the random matching
mechanism in Section 6.

Allocation mechanisms

The basic framework is as follows. There are N individuals in the economy, for
each individual i ∈ 1, 2, . . . , N, let Ei be the set of "individual environments",
which specifies endowments and preferences for each individual. Then, the set
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of possible environments E is the product of the set of individual environments, so
E = ∏i Ei.

We let M be an abstract message space, and Y be the set of feasible net trades for
the individuals of this economy. The non-empty valued correspondence µ : E ⇒

M specifies a set of messages for each environment. Finally, the outcome function
g : M→ Y then maps messages to net trades.

Putting this together, we can define an allocation mechanism, following Mount
and Reiter (1974) and Hurwicz (1977b, 1977c), and Jordan (1982):

Definition 1. An allocation mechanism is a triple (µ, M, g).

We call (µ, M) the message process of the allocation mechanism (µ, M, g): the
message process is the correspondence that specifies messages given each environ-
ment and the message space M. We are interested in informationally decentral-
ized allocation mechanisms, which are mechanisms that feature a message process
(µ, M) that is privacy-preserving. In words, a mechanism is privacy-preserving
if each individual’s response to a message only incorporates that person’s infor-
mation and not the information of others. The informational efficiency literature
considers this a desirable feature of a mechanism, since only a consumer knows
her own endowment and preferences.

Definition 2. A message process (µ, M) is privacy-preserving if for each i there exists
a correspondence µi : Ei ⇒ M such that for each e = (e1, e2, . . . , eN) ∈ E, the profile
of correspondences (µi)i∈{1,...,N}) satisfies

µ(e) = ∩i∈{1,...,N}µ
i(ei).

Physical environment

For simplicity, we consider a class of environments E where there are two goods: a
consumption good and a numeraire good. The agents can consume only positive
quantities of the consumption good, so the consumption set is X = R+×R. There
is a continuum of consumers in this economy of measure one. There are N types of
consumers in this economy, each of identical measure 1/N. A type i ∈ {1, . . . , N}
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has preferences defined on X by a quasilinear utility function ui that satisfies for
x = (x1, x2) ∈ X, that ui(x) = u1i(x1) + x2, and u1i is strictly increasing, con-
cave, and continuous. Let F be the set of such functions and let wi ∈ X be the
endowment of consumers of type i.

A specific environment is a realization of e ∈ E that specifies a profile of quasi-
linear preferences for the types (ui)i∈{1,...,N} ∈ FN and a profile of endowments for
each type (w(i))i∈{1,...,N} ∈ XN. Thus, e = (ui, w(i))i∈{1,...,N} and E = FN × XN.

A vector of net trades for all individuals is given by y ∈ R2N. Let Y be the set
of feasible net trades, which satisfies

Y = {y = (yi)i={1,...,N} : ∑
i

yi = 0, yi + wi ∈ X ∀i}.

In addition, we say an allocation mechanism (µ, M, g) is said to be non-coercive
(that is, satisfies the participation constraint) if any allocation implemented by the
mechanism always yields a higher utility than consuming the endowments. This
definition is stated formally below:

Definition 3. The mechanism (µ, M, g) is non-coercive (satisfies the voluntary par-
ticipation constraint) if for each y ∈ g(µ(e)) then u(wi + yi) ≥ u(wi) for all i ∈
{1, . . . , N}.

4 The Competitive Allocation Mechanism

The competitive mechanism is a triple (µc, Mc, gc). The message space Mc is de-
scribed by

Mc = {(p, y) ∈ R2
++ ×Y : py(i) = 0 ∀i}. (1)

That is, under a perfectly competitive allocation mechanism, the message space
is the set of prices and net trades that preserve the budget balance of all consumers.
The competitive message correspondence consists of prices and allocations that
map the set of physical environments into messages that are utility maximizing
for each consumer; it consists of a message correspondence µi

c for each consumer
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i:

µi
c(e

i) = {(p, y) ∈ Mc : y(i) ∈ argmax
y∈{z∈R2:pz=0}

ui(y)}. (2)

The message correspondence for the competitive allocation mechanism µc is
the intersection of these correspondences:

µc(e) = ∩iµ
i
c(e

i). (3)

By construction, this message correspondence is privacy preserving. The out-
come function gc just maps the message space into the set of net trades:

gc((p, y)) = y. (4)

Thus, the reader can check that for an environment e ∈ E, µc(e) yields the
competitive equilibrium allocation and prices: it specifies prices and net trades
that maximize the utility of consumers and are feasible, and the set of "outcomes"
gc(µc(e)) describes the set of equilibrium net trades for the environment e. Thus,
if the competitive equilibrium exists for an environment e ∈ E, then µc(e) and
gc(µc(e)) are non-empty.

In the competitive mechanism of the N-types economy, the message space in-
cludes only one price (as the price of the numeraire good is normalized to 1) and
N types of consumers minus one for market clearing. Therefore, we have the fol-
lowing lemma:

Lemma 1. The message space of the competitive mechanism Mc is N-dimensional in the
sense that it is diffeomorphic to an N-dimensional manifold.

Proof. See Appendix Subsection A.1 �

Jordan (1982) showed that, under regularity conditions and among the alloca-
tion mechanisms that satisfy the participation (non-coercive) constraint, the com-
petitive mechanism is the unique informationally efficient mechanism: it is infor-
mationally efficient in the sense of minimizing the number of dimensions for a
mechanism that implements a Pareto efficient allocation and he also showed that
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informationally efficient allocation mechanism that satisfies the participation con-
straint must be the competitive mechanism. Thus, the competitive mechanism will
serve as the benchmark to measure other mechanisms.

To visualize the dimensionality of the message space for the competitive mech-
anism, consider an economy with four types of consumers in Figure 1. The oracle
needs to communicate the relevant information about both prices and quantities.
There is one public price for the consumption good for all consumers to know, as
shown in Figure 1a, the price of the numeraire good can be normalized to one. For
the quantities, the oracle needs to tell each consumer the quantity of the consump-
tion good to trade; the quantity of the numeraire is implicitly defined by the budget
balance. Also, if we know the trades for all but one of the types, then market-
clearing implies the trades for the last type. This is shown in Figure 1b. Adding
these necessary messages together, the dimensionality of the message space is 4:
one price and three quantities of the consumption good for the first three types of
consumers.
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Price

Public Price p

Consumer 1

Consumer 2

Consumer 3

Consumer 4

(a) Prices

y1

y3

y2

Market Clearing

Quantities Traded

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Auctioneer

(b) Quantities

Mc = (p, y11, y21, y32)

(c) Message Space

Figure 1: Example Competitive Mechanism with N = 4
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5 Informational Efficiency under the Market-maker

Mechanism

5.1 Frictionless Environment

Now suppose that, in addition to buyers and sellers (the consumers), there is a fi-
nite set J of "market-makers" in this economy. Market-makers are profit-maximizing
(only attribute utility to the numeraire good) intermediaries that "make the mar-
ket" by posting bid and ask prices for the consumption good and intermediate
trade between the consumers.7 Unlike the search mechanism, buyers and sellers
are not directly matched with each other. Instead, both buyers and sellers trade
through the market-makers. In this rather simple environment, buyers purchase
from the lowest-priced market-maker they have access to as long as it is lower than
their valuation, while sellers sell at the highest-priced market-maker as long as the
posted price is higher than their cost.

To make the competitive equilibrium unique in this section, we assume that
the utility function of the consumers for the consumption good is strictly con-
cave. In this case, the utility function is strictly increasing, and thus demand is
single-valued, continuous, and strictly decreasing on price, which implies that the
competitive equilibrium price is a unique p∗.

Consider the case where consumers have costless access to all contracts posted
by all market-makers. We will show that this is equivalent to the competitive
mechanism through Bertrand competition. To see this, consider a market-maker
who posts a pair of bid and ask prices (pb, ps) ∈ R2

++ for the consumption good,
which are, respectively, higher and lower than the prices posted by all other market-
makers. In that case a consumer will either purchase the consumer good for ps or
sell the consumer good for pb.

Let Di(p) be the demand of a consumer of type i for the consumption good. As
there are bid and ask prices, consumers partition themselves into two groups: the

7. In our model, market-makers perform the same role as in Spulber (1996a, 1996b). We have a
finite number of market-makers, and consumers are matched with different a probability to each
market-maker.
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types that have excess demand for the good and choose their demand according to
Di(ps) and the types who have excess supply who choose the quantity according to
Di(pb). Because demand is downward sloping, which means here Di(ps) < Di(pb)

if pb < ps, there might be some types i where Di(ps) ≤ wi1 ≤ Di(pb). In words,
some people may be net suppliers and some may be net demanders.

The market-maker chooses (pb, ps) to maximize profits, which are

π(ps, pb) = (ps − pb)×

 ∑
i:Di(pb)<wi1

[wi1 − Di(pb)]

 , (5)

subject to the market clearing constraint that the quantity brought from sellers is
equal to the quantity demanded by buyers:

∑
i:Di(pb)<wi1

wi1 − Di(pb) + ∑
i:Di(ps)>wi1

wi1 − Di(ps) = 0. (6)

If the market-maker posts bid prices lower than some other market-maker, then
no seller will sell to it, and its profits will be zero. If the maker posts bid prices
higher than all others but not the lowest ask prices, the market-maker has mo-
nopolized the supply, and profits also satisfy 5 subject to the resource constraint
6.

Proposition 1. If at least two market-makers are operating, then there is only one Nash
equilibrium: for at least two market-makers to post a pair of bid-ask prices (pb, ps) =

(p∗, p∗); market-makers post the competitive equilibrium price.

Proof. See Appendix Subsection B.1 �

Proposition 1 states that this environment of strategic price determination by
market-makers implements the competitive equilibrium in a frictionless setting
with complete awareness. Moreover, the proposition says that if consumers have
perfect access to all market-makers then two market-makers are sufficient to achieve
the competitive allocation, as in the model of Bertrand competition. 8

8. Note that the resources constraint prevents a market-maker from monopolizing the supply
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This simple strategic model of intermediation can explain perfectly competitive
markets, but as real markets exhibit many imperfections, we extend this model to
address imperfectly functioning markets over the rest of this section.

5.2 Frictions of Trading: Constrained Consideration Sets

We extend this market-maker model to incorporate frictions of trading, which al-
lows it to yield results such as market power, price dispersion, and other features
(or "imperfections") of markets that do not exist in the idealized competitive mar-
ket.

We represent the frictions of trading by the assumption that consumers have
constrained access regarding the market-makers that they can trade with.9 The de-
scription of an environment e ∈ E includes the market-makers and the degree of
access among consumers regarding these market-makers. For each market-maker
j ∈ J, let mj ∈ (0, 1] be the fraction of consumers with access to market-maker
j. We assume that access is randomly and independently distributed, so a frac-
tion mj of consumers of any type has access to market-maker j and the fraction of
consumers with access to market-makers j and j′ is mj × mj′ . Independence also
implies that the fraction of consumers who are aware of the seller j conditional on
being aware of a competitor is mj. Like with valuations, consumers’ access to spe-
cific market-makers is private information, so market-makers cannot discriminate
against consumers based on their access.

In this environment, consumer types are also differentiated by accessibility. A
consumer type is defined for preferences and accessibility: utility function ui and

and posting the monopoly price as an equilibrium: that would be part of an equilibrium if the
demand from the buyers were inelastic. In that case, a market-maker could make zero profits by
posting a higher ask price than the competitive price and selling part of the supply at the (revenue
maximizing) monopoly price. However, in this case, the quantity supplied at a higher ask price
than the competitive price is strictly higher. In comparison, the quantity demanded is strictly lower;
there will be excess supply, so the market-maker would not satisfy the resource constraint (as we
do not allow excess supply in our market-clearing condition). This explains why our set of possible
equilibrium is restricted compared to Stahl (1988).

9. Other studies, such as Perla (2019), Guthmann (2021), McAfee (1994), Albrecht (2020), and
Armstrong and Vickers (2022), use terms such as "awareness," "availability rate," "choice set," "loyal
customers," and "consideration set" to indicate the subset of agents that buyers or sellers have access
to.
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accessibility Ai ⊂ J. Since access is independently distributed, if mj < 1, ∀j, then
there is a positive measure of consumers without access to any market-maker. Let
NA (for "no-access") be the index for the set of consumers ANA who do not have
access to any market-maker. The budget set for a consumer of type i includes all
pairs of prices from market-makers they have access to:

Bi = {y ∈ X− wi : ∃j ∈ Ai such that pj(y)y = 0}, (7)

where pj(y) are the prices posted by market-maker j conditional on net-trade y
(that is, if the consumer chooses a positive quantity of the consumption good, the
price is pb, if the consumer chooses a negative quantity the price is ps).

5.3 Market-maker Mechanism

Consumers’ valuations and access to market-makers are private information, so
market-makers are constrained to uniform pricing policies where there is no price
discrimination. In this case, each market-maker posts a pair of bid and ask prices
and the consumers choose the best prices among the market-makers they have
access to.

We describe a strategy of the market-makers by pricing function p that assigns
bid and ask prices for an α ∈ [0, 1], which represents the fraction of the monopoly
profit that can be extracted from the consumers. Let p(α) = (pb(α), ps(α)) and
note that (pb(1), ps(1)) = (pM

b , pM
s ), the monopoly price that maximizes a market-

maker’s profits conditional on it being a monopoly (note they satisfy market-clearing
to be feasible). The profits earned from the consumers from trades that are ex-
ecuted when there is a pair of bid and ask prices p(α) are a fraction α of the
monopoly profits, which we denote by ΠM.

Access is independently and uniformly distributed. Therefore, the quantities
bought and sold by consumers in response to a pair of bid and ask prices are pro-
portional to the access parameter mj, which means that in an economy with one
market-maker who posts p(α), then the profits created by that market-maker are a
fraction α of the profits under monopoly prices. In addition, independence implies
that for an economy populated by two market-makers j and j′, if j is playing prices
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according to αj and j′ is playing αj′ with αj′ < αj—which implies consumers prefer
the prices by j′—then the profits of j are mj(1−mj′)× α×ΠM. Independence also
implies that if the prices posted by j imply feasible net trades under monopoly (so
the quantity supplied equals the quantity demanded) then if j loses consumers to
the competition of j’s proposed prices, that implies a proportional loss of quantity
supplied and demanded (in both cases equal to mj′ ∈ (0, 1]), which means that
feasibility still holds.

A profile of actions is described by a profile of αj for each market-maker. A
mixed strategy profile is a profile of cumulative distribution functions {Pj}J

j=1 on
[0, 1] that for α ∈ [0, 1] assigns a cumulative probability Pj(α) ∈ [0, 1] of posting
bid and ask prices that yield lower profits than (pb(α), ps(α)).

The solution concept used here is Nash equilibrium in mixed strategies. An
equilibrium is a profile of mixed strategies {Pj}J

j=1 such that posting a pair of bid
and ask prices p(α) for α on the support of the distribution Pj is profit-maximizing
for market-maker j. As stated in Proposition 2, given a profile of access param-
eters m = (mj)j∈J such that there exists at most one market-maker of whom all
consumers are aware of, there is unique equilibrium strategy profile {Pj}J

j=1 in
this environment. We now have the relevant notation to characterize equilibrium
pricing with uniform pricing strategies.

Proposition 2 (Market-maker Equilibrium). If m is such that mj < 1 for at least J− 1
market-makers, then there is a unique equilibrium that consists of a profile of mixed pricing
strategies {Pj}j∈J and a sharing rule: for a pair market-makers h and g, if mh < mg, then
consumers with access to both will trade with h if the posted prices are the same.

The profile of equilibrium strategies defined on [0, 1] features connected supports [αj, αj]

for each market-maker j ∈ J, which share a common lower bound of the support α. The
distributions are continuous on [α, 1). For each j ∈ J, for α ∈ [αj, αj], Pj(α) satisfies

Pj(α) =
mj

mj Pj(α),

where j is the market-maker with the largest awareness parameter m. The distribution Pj
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Figure 2: Example of cumulative distributions of bid and ask prices when there
are two market-makers 1, 2. Supports for bid and ask prices are the intervals

[pM
b , pb(α)], [ps(α), pM

s ] respectively, p∗ is the competitive equilibrium price. One
of them post prices with positive probability mass at the pair of monopoly prices

(pM
b , pM

s ).

is given by

∏
j 6=j

(1−mjPj(α))α = ∏
j 6=j

(1−mj).

Proof. See Appendix Subsection B.2. �

The equilibrium mixed strategy profile described in Proposition 2 has the fol-
lowing properties: the distributions of prices posted by the market-makers are
non-degenerate and are continuous on the interior of the support, and the larger
market-makers (in terms of the mj) transact at higher profit margins than smaller
market-makers in the sense that the distribution of margins between ask and bid
prices of the larger market-makers first-order stochastically dominate those of the
smaller market-makers. The reason for this result is that (since access is uniformly
and independently distributed) it is less likely that buyers and sellers have access
to a competitor of a large market-maker than a competitor of a smaller market-
maker, so the larger market-maker loses fewer customers if the spread between
the buy and sell prices is increased.

After constructing the equilibrium strategies, it is easy to see that they converge
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to the competitive equilibrium as consumers approach full access to at least two
market-makers.

Corollary 1 (Convergence to Competitive Equilibrium). Consider a sequence of access
parameter profiles mn for the market-makers. If, for at least two market-makers h, g, mh

n

and mg
n both converge to one, then the equilibrium pricing strategies {Pj, p}j∈J converge

in probability to a competitive equilibrium price p∗.

5.4 Allocation Mechanism

The mechanism, in this case, implements the allocation corresponding to a real-
ization of the Nash equilibrium in mixed strategies. Note that if there is imperfect
access regarding almost all the market-makers (that is, if (mj)J

j=1 satisfies mj = 1
for at most one j), then for any market-maker the posted price for buying is strictly
smaller than for selling with probability one, and therefore profits are strictly posi-
tive. Following Hurwicz (1977a), we can interpret the profits of the market-makers
and the resulting deadweight losses to be both components of the "cost" of oper-
ating the allocation mechanism: the allocation implemented by the mechanism
features strictly negative net trades for the numeraire good among the consumers
in the economy.

The set of net trades incorporates the possibility of market-makers making prof-
its by buying at lower prices than they sell. Let Ym be the set of net-trades in this al-
location mechanism, which are defined for each market-maker and each consumer
type. Let Yj be the set of net-trades for market-maker j is described by

Yj = {(y
j
i){i=1,...,N} ∈ R2N : ∑

i
(yj

i1, yj
i2) ∈ (0, R−)}. (8)

Note that if j ∈ J, then the set of trade trades with j must be feasible (so the
quantity of the consumption good sold and brought must add up to zero).

As some consumers do not have access to any market-maker, let YNA corre-
sponds to the net trades implemented by the mechanism to consumers without
access to any market-maker, where consumers cannot trade. In this case, only the
null-set is an element of the set of net-trades:
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YNA = {(yNA
i ){i=1,...,N} = (0, 0)N}. (9)

Then, the set of net trades Ym is described by

Ym = {{yj}j∈J∪{NA} : yj = (yj
i){i=1,...,N} ∈ Yj}

where j is either a market-maker (so j ∈ J) or j = NA, which indicates that a
market-maker is not available.

Given a realized profile of prices pm = (pj
s, pj

b)j∈J , the message space is given
by

Mm = {(pm, y) ∈ R
2J
++ ×Ym : ∀j ∈ J, pjyi1 + yi2 = 0}.

To construct the privacy-preserving message correspondence we define the cor-
respondences for each consumer type i, where µi

m : Ei ⇒ Mm satisfies for any
(pm, y) ∈ µi

m(ei) that the vector of net-trades for consumer i, (yi1, yi2), is utility
maximizing given the profile of bid and ask prices that consumer of type i has
access to among market-makers in Ai, that is (yi1, yi2) ∈ argmaxy∈Bi

ui(wi + y).
Then, µm is a correspondence on E to Mm that satisfies

µm = ∩iµ
i
m(e

i).

5.5 Informational Efficiency

In this case, the dimensional size of the message space incorporates the different
market-makers that make the market: if there are k market-makers then there are
2k different prices posted to the consumers, and there is a subset of consumers who
are not aware of any market-makers.

In this environment, the cardinality of the set of consumer types is N(k! + 1)
as consumers can have access to either any subset of the market-makers or none.
However, since consumers only trade with the market-maker in his accessibility
set that has the most favorable prices, then we can represent the set of consumer
types in the allocation mechanism by a coarser set of consumer types that only
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describes his utility function and the market-maker that he trades with.10 Thus,
the set of types has cardinality N × k + 1, if a positive fraction of consumers lack
access to any market-maker, since all types of consumers that do not have access
to a market-maker have null net trades, and N × k if all consumers have access to
at least one market-maker.

Given a realization of prices of the equilibrium price-posting game among market-
makers, market-clearing of the consumer good among consumers who interact
with each market-maker implies that the message space corresponding to environ-
ments with N different utility functions for consumers is Z-dimensional, where Z
is equal to 2k + (N − 1)k or 2k + (N − 1)k + 1, if the subset of consumers who
are not aware of any market-makers is empty or non-empty, respectively. This is
so because there are bid and ask prices for the consumption good posted by each
market-maker (thus 2k prices), and net trades are defined for either Nk or Nk + 1
types of consumers, and the net-trade implemented for each type of consumer
can be represented in one dimension as we know the price. Thus Z is equal to
2k + (N − 1)k or 2k + (N − 1)k + 1, if the subset of consumers who are not aware
of any market-makers is empty or non-empty, respectively.11 This implies the fol-
lowing proposition:

Proposition 3. As the number of types of preferences N increases to infinity, the ratio of
the dimensional size of the message spaces of the market-maker mechanism to the competi-
tive mechanism converges to k.

That is, the ratio of the size of the message spaces between the competitive
mechanism and the market-maker mechanism is approximately the number of
market-makers operating in the market. This result is intuitive since the compet-
itive mechanism implicitly assumes a single monopolist market-maker called the
Walrasian auctioneer, whose bid and ask prices have zero spread.

10. That is, the computation of the dimensional size of the message-space does not need to in-
clude the information of which other market-makers the trader was aware aside from the one she
transacted with.

11. The net trade can be represented as a quantity of the consumer good and the quantity
paid/received by the consumer of the numeraire is implicitly implied by the budget constraint.
Formally it means we can construct a C∞- diffeomorphism between the message space and a eu-
clidean space of either 2k + (N − 1)k or 2k + (N − 1)k + 1 dimensions.
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5.6 Contestable Markets

The model of this section showed that the message space was approximately pro-
portional to the number of market-makers. Thus, this model implies that to imple-
ment an approximation of the competitive allocation, it requires twice the amount
of information (an economy with two market-makers). We consider an extension
of the model into a dynamic environment with contestable market-making, which
allows the economy to approximate the informational efficiency of the competi-
tive mechanism: Consider the case of a monopolist market-maker who can deter
the entry of other market-makers. If all consumers have access to the monopo-
list, the number of consumer types is N, but a pair of prices is realized instead of
one price in the case of the competitive mechanism. This case represents the most
informationally efficient allocation mechanism in this class of market-maker envi-
ronments: with informational size N + 1, it’s only one dimension more than the
competitive mechanism. This additional dimension reflects the profit margin be-
tween purchase and sale to provide incentives for the market-makers to "produce"
the price mechanism.

In this environment, time is discrete, t = 0, 1, 2, . . ., and let β = 1/(1 + r) be
the discount factor. The consumption good is perishable, and consumers’ endow-
ments can be interpreted as a constant stream of the perishable consumption good.

Accessibility Diffusion: Given a set J of market-makers, there is an accessi-
bility profile {mj

t}
J
j=1 ∈ (0, 1]J . Suppose accessibility regarding a market-maker

diffuses through the economy according to

mj
t+1 = (1− δ)mj

t + M(mj
t, 1−mj

t), (10)

where M is a matching function that represents the diffusion of accessibility through
consumers who hitherto had access to the market-maker, and δ ∈ [0, 1) is the rate
at which consumers lose access to a market-maker (i.e., accessibility depreciation
parameter).

In period zero, each market-maker chooses to post prices according to a se-
quence of distributions for each period. Since the choice of the pricing strategies
does not have any effect on the state of the market, the optimal strategy for each
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market-maker is to choose the profit-maximizing pricing behavior in each period,
given the action profile of the other market-makers in that period. Therefore, at
time t the prices practiced in the market are {Pj}j, described in Proposition 2 with
accessibility profile {mj}j.

We are interested in the convergence of equilibrium prices and allocation to
the competitive equilibrium. Since the outcome of the equilibrium is stochastic
as the market-makers randomize their bid and ask prices, we use the notion of
convergence in probability. Let D be the probability that the prices consumers
have access to are posted from a distance ε > 0 from competitive equilibrium
prices. The economy converges to the competitive equilibrium when D converges
to zero.

Proposition 4 follows from Proposition 2, as the expected equilibrium margin
between buy and ask prices posted by the market-makers converges to zero if
lim mj

t = 1 for mj
t > 0 and J ≥ 2. Therefore, the accessibility of the consumers

regarding the market-makers operating converges to one as t → ∞. This implies
that a measure converging to one of the consumers has access to buy and ask prices
that are converging in probability to the competitive price. Therefore, the equilib-
rium allocation converges in probability to the competitive allocation.

Proposition 4. If there are at least two market-makers and if the law of motion for acces-
sibility diffusion (equation 10) implies that lim mj

t = 1 for mj
t > 0, then as t → ∞ the

equilibrium prices and the equilibrium allocation converge in probability to the competitive
equilibrium.

Entry and Exit

So far, we still need multiple market-makers to approximate the competitive equi-
librium. To model a monopolist in a contestable market, we should introduce entry
and exit. To represent the possibility of entry, let a potential entrant be a market-
maker j with accessibility parameter mj

t = 0. This potential entrant can enter the
market incurring an entry cost E > 0, which is the cost of setting up an entry-level
accessibility parameter me ∈ (0, 1) (which then can grow according to the law of
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motion for accessibility 10).12

Contestable Market Equilibrium

We will now show how a single market-maker (N = 1) approximates the compet-
itive outcome if the market is contestable in the sense of Baumol (1982). Suppose
that there are only two market-makers indexed by 1 and 2. Further, at a date, t = 0
suppose that m1

0 = 1, m2
0 = 0, that is, in period 0, market-maker 1 is a monopolist

that all consumers have access to and market-maker 2 is out of the market. How-
ever, 2 can decide to enter at any period. A monopoly deterrence equilibrium is a
situation where the incumbent market-maker 1 posts a pair of bid and ask prices
in each period such that the profits of a prospective market-maker from offering
better prices to consumers are too low to compensate for the cost of entering the
market.

Definition 4. A monopoly deterrence equilibrium is an equilibrium where 1 chooses
a pricing schedule and, given this pricing schedule, 2 finds it optimal not to enter.
The pricing schedule is profit-maximizing for two reasons. First, a higher selling–
buying margin that yields higher profits for 1 would mean that 2 would enter
and undercut 1’s posted offers in every period. Second, the schedule is profit-
maximizing in the sense that it yields a higher discounted expected value of the
profit stream for 1 than the expected value of the profits in the equilibrium under
a duopoly if 2 also enters the market.

The proposition below states that if entry costs are high enough and accessi-
bility diffusion is fast enough, then the unique equilibrium is for the monopolist
to deter entry. This is because the entry cost is higher than the expected profits
that can be obtained in the duopoly competition process where market-maker 2
competes with the former monopolist. However, monopolist 1 must commit to a

12. Note that the law of motion for the diffusion of accessibility (equation 10) implies that if 1) M is
increasing and concave in both arguments, 2) me is not very large, and 3) the depreciation parameter
is not very large, then market-makers grow after entry (in the sense that mj

t is increasing over time).
This implies that incumbent market-makers are larger than entrants and therefore transact at higher
expected margins. This equilibrium property replicates the findings of Foster, Haltiwanger, and
Syverson (2008, 2016) that incumbents charge higher prices than entrants.
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sequence of prices that still yields a low enough profit to deter the entrant. The
unique equilibrium is the sequence of prices that makes 2 indifferent between en-
tering and not entering but that maximizes the present value of 1’s profit stream.
As the discount rate decreases, the present value of the gains from entering the
market increases. This implies that the buy and ask prices posted by the monopo-
list become closer to the competitive equilibrium price. Thus, as the discount rate
r converges to zero, the present value of any positive profit stream diverges to in-
finity, which implies that the monopoly deterrence equilibrium converges to the
competitive equilibrium as the discount rate converges to zero. Therefore, even
with a single active market-maker, when the discount rate is sufficiently low, com-
petition "for the field"—to borrow a phrase from Demsetz (1968)—is sufficiently
intense such that the equilibrium approximates the competitive equilibrium.

Proposition 5. If accessibility diffusion is fast enough, such that ∑∞
t=0(1 − m2

t ) ≤ C
for some constant C conditional on market-maker 2’s entry, and the discount rate r is low
enough, then for an entry cost E equal or higher than C × πM, the unique equilibrium
is the monopoly deterrence: The monopolist commits to post prices p(π) that yield a per-
period profit of

π = E/

(
∞

∑
t=0

βtm2
t

)
to deter entry. As r converges to zero, the deterrence monopoly equilibrium profit flow
π converges to zero, which means the posted buying and selling prices converge to the
competitive equilibrium prices p∗.

Proof. See Appendix Subsection B.3. �

The entry costs for market-maker 2 are costs to build up accessibility and can
be interpreted as the costs of communicating information to the consumers in the
economy. If the costs of communicating additional information are higher than the
private benefits, which are the profits 2 obtains from entering the market, then it
does not occur in equilibrium.13

13. We have not performed a welfare analysis to check if the monopoly deterrence equilibrium
is more efficient than the duopoly after 2’s entry. The social benefit of 2’s entry would be the
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In the monopoly deterrence equilibrium, the number of market-making firms
is N = 1, and because m1

0 = 1, the subset of consumers without access to a market-
maker is empty. Consider an example with two types of buyers and two types of
sellers; the oracle needs to communicate two prices, a price for buyers and one for
sellers, as shown in Figure 3a. The communication for the quantities is the same as
the competitive mechanism, except now the trades "go through" the market-maker
and not the Walrasian auctioneer, as shown in Figure 3b. The messages space Mm

is five-dimensional: two prices and three quantities.

Ask
Price

p1
s

Bid
Price

p1
b

Consumer 1

Consumer 2

Consumer 3

Consumer 4

(a) Prices

y1

y2

y3

Market Clearing

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Market-
Maker

(b) Quantities traded

Mm =
(

p1
b, p1

s , y1, y2, y3
)

(c) Message Space

Figure 3: Example of the allocation mechanism of a monopolist market-maker
with N = 4

More generally, Subsection 5.5 implies that the dimensional size of the message
space of the allocation mechanism is N + 1, which is only one dimension more
than the competitive allocation mechanism, which is N. The added dimension is

reduction of the deadweight loss thanks to prices closer to perfect competition. The social benefits
are different from the private benefits of entry.
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due to the fact that the market-maker posts a pair of prices instead of only a single
price. For completeness, we state it as a proposition.

Proposition 6. The message space of a monopoly deterrence equilibrium requires one more
dimension than the competitive equilibrium.

Proposition 6 is stated in terms of the difference in dimension size, unlike pre-
vious propositions, which were in terms of the ratio. Given that the competitive
allocation is the unique informationally efficient (Jordan 1982), we have therefore
shown that the mechanism of the monopoly deterrence market-maker is a second-
best mechanism in terms of information. However, as we have argued above, the
market-maker model has the added benefit of explicitly modeling a market mi-
crostructure with intermediaries that facilitate trade.

6 Informational Inefficiency without Intermediation

The competitive mechanism is meant to represent the frictionless limit of some
strategic process of price formation. We showed how the price formation mecha-
nisms based on intermediation (where consumers trade through market-makers)
can approximate the informational efficiency of the competitive mechanism. In
this section, we consider the situation where consumers have to meet each other
and bargain over the terms of trade. While these models of random matching and
bargaining can arrive at the competitive allocation as frictions of trade decrease,
we will see that they cannot approximate the informational efficiency of the com-
petitive mechanism. Therefore, our analysis suggests that intermediation plays a
vital role by allowing markets to achieve informational efficiency.

To understand the informational efficiency of a decentralized matching and
bargaining process, we need an explicit model. We use the model from Mortensen
and Wright (2002), which is a standard articulation of the modern random match-
ing and bargaining modeling framework.
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6.1 Description of the Matching Environment

Time is continuous. For tractability, we assume that in this environment, the types
of consumers can be partitioned into two types: buyers who are not endowed
with the consumption good and sellers who are endowed with one unit of the
consumption good. There are Nb > 0 types of buyers and Ns = N − Nb > 0 types
of sellers, buyer types ib are indexed by ib ∈ {1 . . . , Nb} and seller types is are
indexed by is ∈ {Nb + 1, . . . , N}.

We assume that consumers have unit demand, with means a consumer of type
i has a utility function ui(x1, x2) defined for the consumption good x1 and the nu-
meraire good x2. The utility function satisfies ui(x1, x2) = vix1 + x2 for x1 ∈ [0, 1]
and ui(x1, x2) = vi + x2 for x1 > 1, we call vi the valuation of type i. Let F and G be
the cumulative distribution functions of valuations of buyers and sellers (the c.d.f.
F(x) is equal to the fraction of buyer types {i}i ∈ {1, . . . , Nb} such that vi ≤ x).

There is a flow of buyers who can enter the market at the rate b > 0 and sellers
at the rate s > 0. Buyers (sellers) then can choose to "enter the market," which
means they can randomly meet sellers (buyers) and trade. Given populations of
buyers B > 0 and sellers S > 0 participating in the market, they meet according to
the matching function M(B,S). Let the buyer/seller ratio θ = B/S be the market
tightness parameter, m(θ) = M(B,S)/S be the rate a seller meets buyers, and
m(θ)/θ be the rate a buyer meets sellers. All agents discount future payoffs at the
rate r ≥ 0, and to participate in the matching process buyers have to incur a cost
cb ≥ 0, while sellers have to incur a cost cs ≥ 0.

When a buyer and a seller meet, one of the two, randomly chosen, announces
a take-it-or-leave-it price offer. Let ω ∈ (0, 1) be the probability a seller makes the
offer. If the other party rejects the offer, they both continue searching as if they
had never met; if the other party accepts the offer, the exchange occurs, and both
exit the market. We study the steady-state search equilibrium where the flows of
buyers and sellers exiting the market are equal to the flows entering so that the
corresponding net trades in the competitive equilibrium have an analogous im-
plementation in this environment. That means b times the probability the buyers
choose to enter is the flow of entering buyers in the market, and this flow of en-
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tering buyers is equal to the flow of matchings M(B,S) times the probability they
trade and exit. Note that as in the steady-state equilibrium, the flow of sellers
entering the market is also equal to the flow of trades, which means that supply
(sellers entering the market) is equal to demand (buyers entering the market).

Note that the bargaining protocol we use is equivalent to the generalized Nash
solution over the joint surplus where the sellers’ bargaining power is ω ∈ (0, 1).
To see this, let Vb(x) be the value of a buyer with valuation x to participate in the
market and Vs(z) be the value of a seller with valuation z. A take-it-or-leave-it
offer to a buyer of one unit of the good for a price p is acceptable if and only if the
price generates a surplus equal to or higher than the value of continuing to search
for trading partners; thus, the offer, x − p ≥ Vb(x), is acceptable to a seller if and
only if p − z ≥ Vs(z). Thus the best strategy for one party is to offer the other
party’s reservation value; thus, the seller offers p = x − Vb(x), the buyer offers
p = z + Vs(z), and a transaction occurs if and only if x−Vb(x) ≥ z + Vs(z). Since
the seller makes the offer with probability ω, the expected price of a transaction is
p(x, z) = ω(x−Vb(x)) + (1−ω)(z + Vs(z)), which can be rearranged as

p(x, z) = z + Vs(z) + ω[x− z−Vb(x)−Vs(z)]. (11)

This is the price according to the generalized Nash solution if the seller captures a
fraction ω of the joint surplus given reservation values z + Vs(z) for the seller and
x−Vb(x) for the buyer.

Given the transaction prices, the values of participating in the market can be
described as follows: The expected value of participation in the market for a buyer
satisfies

rVb(x) =
m(θ)

θ

∫
max{x− p(x, z)−Vb(x), 0}dΓ(z)− cb, (12)

and the expected value of participation in the market for a seller satisfies

rVs(z) = m(θ)
∫

max{p(x, z)− z−Vs(z), 0}dΦ(x)− cs, (13)

where Γ and Φ are the distributions of seller and buyer types participating in the
market. These distributions differ from the respective exogenous distribution of
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potential seller and buyer entrants, G and F, as some types choose not to enter if
the expected value of entering is not positive.

Substituting the right-hand side of equation 11 into equations 12 and 13 yields

rVb(x) + cb =
m(θ)(1−ω)

θ

∫
max{x− z−Vb(x)−Vs(z), 0}dΓ(z) (14)

and
rVs(z) + cs = m(θ)ω

∫
max{x− z−Vb(x)−Vs(z), 0}dΦ(x). (15)

Equations 14 and 15 show that the value of participating in the market is strictly
increasing in the buyer’s valuations and strictly decreasing in the seller’s valua-
tion. Because the participation values are monotonic, there exist marginal entrants.
The steady-state search equilibrium is defined in terms of a pair of marginal types
of buyers and sellers (Rb, Rs) with Rb > Rs, where a buyer with valuation x enters
the market if and only if x > Rb, and the seller with valuation z enters if and only
if z < Rs. In a steady-state search equilibrium, the distribution of types partici-
pating in the market is stationary, which implies that: (1) The measure of entering
sellers and buyers must be the same, and therefore the pair of marginal valuations
(Rb, Rs) satisfies the condition sG(Rs) = b[1 − F(Rb)].14 (2) The distribution of
participating types is constant.

The steady-state search equilibrium is characterized by (Vb, Vs, Rb, Rs, Φ, Γ), the
value functions (Vb, Vs), cutoff valuations to participate in the market (Rb, Rs), and
the distributions of participating types (Φ, Γ) of buyers and sellers, respectively.
The Appendix section C provides the characterization of the search equilibrium.
We show that as search costs decrease to zero, the equilibrium distribution of prices
converges to the competitive price and the equilibrium allocation converges to the
competitive equilibrium allocation.

14. For steady-state equilibrium to exist we need to impose some conditions on the distribution of
buyer and seller types, for example assuming that s = b and that Nb = Ns are sufficient conditions
so that we can find pairs of marginal types that equate supply with demand.
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6.2 The Allocation Mechanism in the Search Equilibrium

As shown in the Appendix section C, there exists a r̂ > 0 such that for a discount
rate r ≤ r̂ all meetings result in trade. For simplicity, we focus on steady-state equi-
librium with r ≤ r̂. In a steady-state equilibrium, there is a constant distribution
of types in the market. Therefore, the distribution of types leaving the market is
the same as the distribution of types entering the market. As all meetings result in
trade, these distributions are given by (F, G) with the cutoffs (Rb, Rs).

The allocation mechanism in the search equilibrium (µs, Ms, gs) is constructed
as follows:

As prices and allocations depend on who one matches with, the sets of types
now include all pairs of buyer types ib and sellers types is, (ib, is). Let y be a profile
of net-trades for each possible pair of types of buyers and sellers (ib, is). Let y(ib, is)

be the net trade for buyer of type ib that matches sellers of type is and y(is, ib) is
the net trade of a seller of type is that matched with buyer of type ib. Let Y be the
set of feasible net trades. Then y ∈ Y is a feasible profile of net-trades if and only if
y(i,j) + wi ∈ X, y(j,i) + wj ∈ X and ∑(i,j) y(i,j) = (0, 0).

Note that as a steady-state equilibrium might feature Rb < min {x(ib)}
Nb
ib=1 and

Rs > max {z(is)}Ns
is=Nb+1; all types of buyers and sellers participate in the market

message space of this allocation mechanism must specify a price for each possible
pairing of buyers and seller types, which means that there are Nb × Ns prices for
each pair of buyer-seller types (ib, is).

The message space is:

Ms = {(ps, y) ∈ RNb
+ ×R

Ns
+ ×Y : ps(ib, is)y1(ib, is) + y2(ib, is) = 0 ∀(i, j)}, (16)

where ps(ib, is) is a price assigned for a pair of buyer and seller types. We
construct a message correspondence that is privacy preserving and implements
the allocation of the steady-state search equilibrium.

Let µi
s be a correspondence from the set of environments Ei (here constrained to

buyers and sellers with unit demand) to Ms that satisfies µi
s(ei) = {(ps, y) ∈ Ms :

y(i) = ys(i)}, where ps(ib, is) is a price for a pair of buyer and seller types (ib, is)
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and ys(i) is the net-trade in the steady-state search equilibrium. If i is a buyer of
type ib who meets seller is and wants to trade, which means vib > ps(ib, is), the net
trade for type i is given by ys(i) = (1,−ps(ib, is)). Otherwise, if vib < ps(ib, is) then
i does not enter the market, trade does no occur, and ys(i) = (0, 0).

Define the correspondence µs : E ⇒ Ms by

µs(e) = ∩iµ
i(ei) ∩ (ps(e)×Y), (17)

where ps(e) is the profile of prices determined by the steady-state search equi-
librium in the environment e for the types that trade in equilibrium (so ps(e, (ib, is))

is the equilibrium price for a pair of buyer and seller types (ib, is)), for the types
that do not trade in equilibrium set ps(e, (i, is)) = Rb if i is a type of buyer who
does not participate in the market for any seller type is (note that vi < Rb so this
type does not trade), and ps(e, (ib, i)) = Rb if i is a type of seller who does not
participate in the market (note that vi > Rs so this type does not trade as well).

Note that since buyers and sellers meet randomly and the transaction price de-
pends on the pair of valuations of buyers and sellers (p(x, z)), prices are not deter-
ministic in the search equilibrium. However, the distribution of realized transac-
tion prices is deterministic, as there is a continuum of consumers. Thus any search
equilibrium ps implies an equilibrium c.d.f. of prices P. Also, note that ps(i) > Rs

if ci ≤ Rs and ps(i) < Rb if vi ≥ Rb since prices must compensate for search costs,
while consumers who do not trade are the types with costs/valuations in (Rs, Rb).

Finally, let the outcome function gs satisfy gs(p, y) = y, it is a projection from
Ms to Y.

6.3 Informational Efficiency

As there is price dispersion in the steady-state search equilibrium, the profile of
prices and the set of net trades is a higher dimensional object than under the com-
petitive mechanism. To see this, consider an economy with an even number of N
types, with N/2 types of potential buyers and N/2 types of potential sellers. For
the matching and bargaining mechanism in this economy, we need to specify a dif-
ferent price for each pair of types (ib,s ), so there are (N/2)2 prices for the indivis-
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ible good. For the quantities traded, once we have specified the quantity bought
by a buyer of type ib from a seller of type is, we have also defined the quantity
sold by is to ib. The market clearing condition applies for each pair of trades in
the matching environment. Therefore, the message space is (N/2)2 for quantities
traded. Therefore, the matching mechanism message space Ms is 2(N/2)2 dimen-
sional. Lemma 2 states the main result regarding information size in the matching
economy.

Lemma 2. The matching mechanism message space MN
s is a 2(N/2)2 dimensional.

Proof. See Appendix Subsection C.1 �

Combining Lemma 1, which shows that the competitive mechanism message
space is N dimensional, and 2, which shows that the matching mechanism mes-
sage space is 2(N/2)2 dimensional, we can see that difference between the match-
ing and competitive mechanisms diverges to infinity as N increases. This is stated
as Proposition 7.

Proposition 7. As N → ∞ the ratio of the dimensional size of MN
s to MN

c diverges to
infinity.

While Mortensen and Wright (2002) show that as the frictions of trade decrease,
the distribution of prices across transitions converges to the competitive price, so
the matching and bargaining allocation mechanism converges to the competitive
mechanism in terms of allocation. But it does not approximate it in terms of infor-
mational efficiency.

In other words, the matching and bargaining mechanism requires that each
market participant be aware of all types of participants operating in the market
to form expectations regarding payoffs from participating in the market and bar-
gaining with the other participants. This is precisely the inverse of the intuition
regarding the informational efficiency of the market as articulated by the literature
on the informational efficiency of competitive markets: that each participant of the
market can use prices as an efficient way to substitute for the information they
would otherwise require to allocate resources without access to market prices.
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(a) Prices
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y(21)

y(22)

y(12)

Buyer 1

Buyer 2

Seller 1

Seller 2

(b) Quantities Traded

Ms = (p(1, 1), p(1, 2), p(2, 1), p(2, 2), y(1, 1), y(1, 2), y(2, 1), p(2, 2))

(c) Message Space

Figure 4: Example Matching Mechanism with N = 4 types of consumers
categorized as buyers and sellers.

To visualize why the message space is larger for a random matching and bar-
gaining mechanism than the competitive mechanism, consider our previous ex-
ample with four types of consumers, partitioned into two types of buyers and two
types of sellers. For the random matching and bargaining mechanism, the oracle
now needs to communicate a price for each pair of possible trades, as shown in
Figure 4a. She also needs to communicate the quantity traded for each pair, as
shown in Figure 4b. Combined, the message space for the search mechanism is
8-dimensional: four prices (one price for each possible pair of buyers and sellers)
and four quantities (the quantity sold by the seller to the buyer for each possible
pair).

7 Concluding Remarks

When evaluating the plausibility of different models and empirical relevance, we
argue that an important factor to consider is the degree of informational efficiency.
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For example, one justification for using competitive models is that people need
such little information to implement a competitive equilibrium.15

The size of the messages needed to implement an allocation is an elegant mea-
sure of the informational and computational burden placed on the agents in the
model. Economists have proved that the competitive allocation mechanism is the
only informationally efficient allocation mechanism. However, as the model of
perfect competition assumes that prices are not set by rational agents but are de-
termined as the prices that "equate supply with demand," models of strategic price
formation mechanisms are needed to provide strategic foundations for the concept
of competitive equilibrium.

Models that explain price formation should also explain how the message space
of the allocation mechanism that is implicit in the model approximates the main
feature of the competitive mechanism: that agents can take terms of trade as a
given without the need to "think" about how they are determined. Thus, in the
present paper, we studied informational efficiency in allocation mechanisms where
the terms of trade are set by strategic agents. We studied two such mechanisms:
an allocation mechanism with intermediation (market-maker model) and an al-
location mechanism without intermediation (a random matching and bargaining
mechanism).

Models of random matching and bargaining have been extensively studied as
explanations for how competitive equilibrium allocations might be approximated
as frictions of trade decrease (for example, see Gale 2000). However, we show that
this class of models fails to approximate the informational efficiency of competitive
equilibrium: in particular, we show that when the number of types grows large,
the random matching allocation mechanism requires infinitely more information
than the competitive mechanism. Therefore, a true random matching mechanism,
where everyone must be able to search across all the people in the economy to
find trading partners, is extremely inefficient in terms of information, as it requires
that each agent must have a complete model of the economy. That is one possible

15. The model also needs to fit the data, which, for the competitive model, is most clearly seen
from experimental data (Smith 1982; Friedman 1984; Friedman and Ostroy 1995; Shachat and
Zhang 2017; Martinelli, Wang, and Zheng 2022; Al–Ubaydli, Boettke, and Albrecht 2022).
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reason we do not often observe single buyers trading with single sellers in real-
world economies.

In contrast, we proposed a strategic allocation mechanism where market-makers
intermediate trade. Such a mechanism has a few attractive features. First, the
market-maker mechanism better matches certain features of the data, such as ex-
hibiting price dispersion and prices that depend on the tenure of firms in the mar-
ket. The other attractive feature, which is the focus of this chapter, is that the
market-maker mechanism requires almost as little information as the competitive
allocation, even when it is used to explain deviations from the competitive allo-
cation. This informational efficiency is one possible reason we observe interme-
diaries facilitating trade between individual original sellers and individual final
buyers. It may be a puzzling result that an economy in which market-makers
intermediate trading for each good can be thought of as more informationally ef-
ficient than markets where trading is highly decentralized, but it is an intuitive
result: if traders only need to be aware of a few intermediaries for each good they
purchase, the informational requirements are much smaller than if traders need to
form a model of the whole market before engaging in search and bargaining for
their consumption bundle.

Our market-maker model allows us to understand better the informational
efficiency of intermediating "platforms" which are just another term for market-
makers (Spulber 2019), and their growing role within the modern economy. Our
results suggest that the presence of platforms with large market shares, such as
Amazon, Google AdSense, and Uber, might economize on information (in addi-
tion to any other frictions they reduce) compared to industries with many agents
on both sides of the market. As the complexity of economic systems increases,
market-maker/platforms have an increasing informational advantage over an al-
location system where each trader has to meet with other traders directly.
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A Competitive Mechanism Proofs

A.1 Proof of Lemma 1

Proof. Using the conditions of market-clearing, ∑k
i=1 yi=0 and budged balance, py1 =

0, ∀i, implies that the function (p, y) → (p, ỹ) ∈ R++ × RN−1
++ , where for 1 ≤

i ≤ N − 1, ỹi1 = yi, is a C∞-diffeomorphism. Thus, Mk
c is a (N − 1) + 1 = N-

dimensional manifold. �

B Market-Maker Mechanism Proofs

B.1 Proof of Proposition 1

Proof. Note that there exists at least one competitive equilibrium price p∗: as pref-
erences are quasilinear and the utility for the consumption good is non-negative,
demand for the consumption good is downward sloping while supply is given by
the endowment. Therefore, for a price, p = 0, demand is at least as large as supply,
and if it is larger, as utility is continuous, demand is upper hemicontinous; thus,
supply and demand are equal for at least one price p∗.

To see that posting the competitive price is a Nash equilibrium, note that it
yields zero profits. For any market-maker, a deviation either gives negative profits
(if purchase prices are higher than p∗ and for selling are lower than p∗) or zero
profits (in the case the purchase prices are lower than p∗ and for selling are higher
than p∗). Therefore, there is no profitable deviation for a market-maker.

To see that this is the unique Nash equilibrium, suppose for a contradiction it
is not. There exists another Nash equilibrium where market-makers post prices
to make strictly positive profits. Other market-makers could deviate and make
profits by capturing the customers of competitor market-maker by posting more
attractive bid and ask prices. This logic is the same as deriving the Nash equilib-
rium of the standard Bertrand competition model. �
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B.2 Proof of Proposition 2

Proof. Part 1. Existence and characterization:
As accessibility is independent, the competitive equilibrium price p∗ is also

the competitive equilibrium price for the subset of traders who have access to a
market-maker.

To construct the candidate equilibrium strategy profile {Pj}j∈J , we consider
pricing strategies described by a pair (pb, ps) of offers to buy and sell the good
by the market-maker where pb ≤ p∗ ≤ ps. First, consider the monopoly prices
pM = (pM

b , pM
s ) which satisfies the monopolist market-maker problem (which

is to maximize profits given by equation 5 subject to the constraint described in
equation 6). If there are multiple profit-maximizing pairs of monopoly prices, let
(pM

b , pM
s ) be the pair of monopoly prices with the lowest difference between the

buying and selling price that clears the market.
Let j be the market-maker with the largest accessibility parameter: (mj = max{mj}j∈J).

Let
α = ∏

h 6=j

(1−mh),

and let ΠM be the monopoly profit (that is, the profits of a market-maker posting
the monopoly prices in a situation of monopoly). Consider a function p : [0, 1] →
R2

+ such that p(α) = (pb(α), ps(α)) is a pair of prices that satisfies

π(pb(α), ps(α)) = αΠM, (18)

and satisfies market clearing constraint (described in equation 6).
That is, (pb(α), ps(α)) is the pair of prices that implements a feasible net trade

for a monopolist market-maker and yields a fraction α of the monopoly profits.
In addition, if for some α ∈ [0, 1] there is more than one such pair of prices, then
(pb(α), ps(α)) is the pair with the smallest difference between the buying and sell-
ing prices.

This is stated formally as follows: for each α ∈ [0, 1], the prices (pb(α), ps(α))
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satisfy

(pb(α), ps(α)) = arg min
(b,s)
{|ps − pb| : (ps, pb) satisfies equations 6, 18}.

The existence of at least one pair of prices that satisfies equations 6 and 18 fol-
lows from the continuity of consumer demand.

Note also that if a pair of prices is feasible for a monopolist market-maker, then
such a pair of prices is also feasible for a market-maker competing with other
market-makers. To see this, consider two market-makers in competition. Sup-
pose each market-maker j ∈ 1, 2 posts a pair of bid and ask prices p(αj) for some
αj ∈ [0, 1]. If α1 < α2, 1 is posting lower ask prices and higher bid prices, and
consumers who are aware of both market-makers prefer to trade with 1. Since
consumer’s preferences are independently distributed from consumer accessibil-
ity, the quantities supplied and demanded from 2 fall in the same proportion
(both supply and demand from market-maker 2 decreases by a fraction of m1),
so market-clearing still holds.

The candidate equilibrium strategy profile {Pj}j∈J is a profile of cumulative
distribution functions on [α, 1]; Pj(α) is the probability that buying (selling) prices
higher (lower) than pb(α)(ps(α)) and that satisfies the equal profit condition

∏
h 6=j

(1− Ph(α)mh)π(ps(α), pb(α)) = αΠM, (19)

where pi(ps, pb) is given by 5. Note that

1−mh︸ ︷︷ ︸
Prob. h/∈Ai

+ [1− Ph(α)]mh︸ ︷︷ ︸
Prob.h∈Ai and (ph

b<pb(α) or ph
s>ps(α))

= 1− Ph(α)mh, (20)

is the probability that a consumer chooses to transact with the market-maker j over
competitor h and α

s ΠM is the profit margin of a market-maker when posting prices
at the minimum profitability level (lower bound for sales, upper bound for pur-
chases), which means its selling (buying) prices undercuts (tops) all competitors’.
Also note that equation 19 implies that Ph(α) = 0 as [ps(α) − pb(α)]G[pb(α)] =
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αΠM.
To check that this is an equilibrium, note that any prices not in the support

of equilibrium strategies P = {(pb(α), ps(α)) : α ∈ [α, 1]} lead to strictly lower
profits: If we consider prices (pb(α), ps(α)) that satisfy equations 18 and 6 de-
fined for α < α, profits are strictly lower by construction. For prices (pb, ps) ∈
[pM

b , pb(α)]× [ps(α), pM
s ] ∩ P , they either yield strictly lower profits because they

are undercut by prices which would achieve similar profitability in the case the
market-maker were a monopolist, or they are not feasible (that is, the market-
maker promises to sell more than it purchases).

Given the sharing rule, it is easy to check that profits are constant on the support
of {Pj} for each j. If there is only one market-maker j with the largest accessibility
parameter mj, then the equal profit condition (equation 19) implies that there is
an atom of probability in the mixed strategy of the largest market-maker at the
monopoly price, Pj(pM). The sharing rule implies that consumers always choose
to trade with h 6= j if h posts the monopoly prices pM, hence its profits do not fall
discontinuously on the support of the equilibrium strategy [α, 1] as p(α)→ pM.

Part 2. Uniqueness:

Note that any feasible pricing strategy for the market-maker must be consistent
with market clearing. Note that by construction, the pricing strategies on the set
of pairs of prices {p(a) : a ∈ [0, 1]} are weakly dominant, as any feasible pricing
strategy (pb, ps) yields the same profits as a strategy p(a) for some a ∈ [0, 1], then
sellers and buyers prefer the buying and selling prices p(a). Therefore, for any
market-maker posting a pair of prices (pb, ps) /∈ {p(a) : a ∈ [0, 1]} cannot be a best
response to a best response. Hence, any candidate for Nash equilibrium consists
of distributions over prices in {p(a) : a ∈ [0, 1]}.

Because we are restricted in our candidate equilibrium strategies to prices in
{p(a) : a ∈ [0, 1]}, the proof of uniqueness of equilibrium is a proof of uniqueness
over distributions on [0, 1]. Consider an equilibrium strategy profile F, undercut-
ting arguments imply that F = {Fj}j∈J is non-degenerate and the upper bound of
the support for at least a pair of market-makers must include the monopoly price
(otherwise it is a profitable deviation to post the monopoly price). The union of
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the supports for the strategies must be convex; otherwise, market-makers could
increase profits by posting prices in the complement of the support. Additionally,
the supports for the mixed strategies of individual market-makers must be convex;
otherwise, the equal-profit condition will be violated.

Note that there cannot be atoms at a lower bound of the support of equilibrium
price distributions; otherwise, other market-makers have the incentive to post a
more attractive pair of prices p(α) for α in the ε-neighborhood of the lower bound
of the support. If there are no atoms at the lower bound of the support of the distri-
bution, the lower bound of the supports for any pair of market-maker must be the
same if the interiors of the supports overlap. This implies that equilibrium strate-
gies for all seller types have convex supports (that is, the union of the supports is
its own convex hull).

As any equilibrium in this environment with mixed pricing strategies satisfies
the equal profit condition, the discussion in the preceding paragraph implies that
equation 19 characterizes any equilibrium where the interiors of the supports of
the price distributions overlap. This implies this set of equilibria is unique. To
finish the proof that the equilibrium is unique, it remains to show that any equilib-
rium profile of price distributions is such that the interiors of the supports overlap.
That is, for any pair of market-makers the interior of the support of mixed pricing
strategies must overlap.

To see that suppose, without loss of generality, that there is an equilibrium strat-
egy profile P such that there is a pair of market-makers j, j′ with the same acces-
sibility parameter 0 < mj = mj′ < mk who compete against each other posting
prices according to a strategy that is described by pair of distributions Pj, Pj′ on
[0, 1] and the price posting function p that maps [0, 1] into pairs of buying and
selling prices. The distributions Pj, Pj′ have the same support [α∗, α∗] while all
other market-makers post prices according to distributions that have their sup-
ports in [α, 1] with α = α∗. In words, market-makers j and j′ compete by posting
strictly more attractive prices to buyers and sellers than all others. Let K be the
market-maker with largest accessibility parameter in the subset of market-makers
Ĵ = J − {j, j′}.

Let Πo(α) be the equilibrium profits per unit of accessibility of market-maker o

41



in posting prices p(α); we call that o’s equilibrium "profitability." Since α∗ = α, the
profitability of market-maker j of posting prices p(α∗) is

Πj(α∗)/mj = (1−mj′)α∗ΠM. (21)

If market-maker o 6= j, j′ posts prices p(α), its equilibrium profitability is

Πo(α) = (1−mj′)(1−mj)αΠM. (22)

Note that α = α∗, and therefore the equal-profit condition for j and equation 21
imply that

α∗ = (1−mj′)α. (23)

Finally, equations 22 and 23 together imply that for market-maker o 6= j, j′ that
its profitability in posting prices p(α∗) satisfies

Πo(α∗) = α∗ΠM (24)

= (1−mj′)αΠM > (1−mj′)(1−mj)αΠM (25)

= Πo(α). (26)

The inequality 25 is a contradiction with P being an equilibrium. Therefore, in
equilibrium, the interior of the supports must overlap.

Hence, the pricing strategy described by {Pj}j∈J is the unique Nash equilib-
rium given the sharing rule that the market-maker with the smaller accessibility
parameter mj has priority in transactions to buyers and sellers in the case of a tie
in prices. �

B.3 Proof of Proposition 5

Proof. As in the proof of proposition 2, let ΠM be the monopoly profit rate. Con-
sider a profit rate π ∈ (0, ΠM) (in slight abuse of notation), and suppose the in-
cumbent 1 considers posting prices p(π) = (pb(π), ps(π)), which is the pair of bid
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and ask prices with the smallest difference that satisfies π(pb(π), ps(π)) = π. The
pricing strategy, p(π), yields a payoff of π × mj, if j is a monopolist. We will say
a firm "undercuts" by posting a pair of bid and ask prices p(π̂) with π̂ < π, thus
pb(π̂) > pb(π) and ps(π̂) < ps(π).

First, for simplicity, we consider the case where agents are myopic and only
care about present payoffs. Then, we extend the equilibrium to the case when
agents care about future payoffs.

Step 1: One period deterrence game
In this case, agents are myopic and only care about present payoffs so that the

discount factor β = 1
1+r = 0. In this case, the deterrence game has only one period.

For π ≤ E/me, if the incumbent posts p(π), then the cost of entry E is higher than
the profits 2 can make after entry by undercutting 1 with higher bid and lower ask
prices. Therefore, 2 does not enter if 1 posts p.

Therefore, if the incumbent posts p(π) for π = E/me (the highest profit margin
that deters entry) and the entrant is playing "no entry," this is an equilibrium if
1 has no incentive to deviate. Clearly, 1’s profits decrease with a lower bid-ask
spread than π = E/me, so there is no incentive for 1 to deviate by posting more
attractive prices to the consumers. While prices p(π′) for π′ > π = E/me imply
that 2 can make profits higher than E/me if 2 enters and undercuts 1. Thus, 1 has
no incentive to deviate in pure strategies.

It remains to show that 1 finds it more profitable to deter entry than to compete
with 2 in mixed strategies, as described in Proposition 2. Note that the profit that
1 makes in the mixed strategy equilibrium with both market-makers operating is
(1−me)πM. The profit 1 makes with entry deterrence strategy is E/me, thus if the
entry cost E is high enough so that

E/me > (1−me)π
M (27)

the market-maker 1 finds it profitable to deter entry. Note also, that me(1−me)πM

are the profits of 2 if they enter and compete in mixed strategies with 1, thus if
E > me(1−me)πM, 2 does not want to enter the market even if 1 plays the mixed
strategy of the equilibrium where both market-makers compete. If E ≤ me(1−me),
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2 finds it a best response to enter the market and compete with 1 if 1 is playing
the mixed strategy, and 1’s profits in the mixed strategy equilibrium are equal or
higher than profit π = E/me of the deterrence strategy.

Therefore, the deterrence strategy p(π) for π = E/me for 1 and 2 chooses to
not enter is the only equilibrium if and only if E > me(1−me)πM.

Step 2: Infinite horizon deterrence game
The logic of the one period case can be extended to the environment where

agents are not myopic and instead have a common discount factor β ∈ (0, 1).
Then payoffs of 1 and 2 playing the mixed pricing strategies in the Markov perfect
equilibrium after entry are, respectively

U1
e =

∞

∑
t=0

βt(1−m2
t )π

M, (28)

U2
e =

∞

∑
t=0

βtm2
t (1−m2

t )π
M, (29)

where t is the number of periods after the entry. Therefore, {m2
t }t is the sequence

of accessibility parameters for 2 that satisfies equation 10 for t > 0 and m2
0 = me.

Suppose the monopolist can only choose a fixed pricing schedule, posting p(π), π ∈
[0, πM] in every period. The present value of 2’s profits conditional on entry when
1 is following its commitment p(π) is bounded above by

U2
d(π) =

∞

∑
t=0

βtm2
t π.

To deter entry, π must imply that U2
e (π) ≤ E. Consider the profit-maximizing

strategy of entry deterrence π that satisfies U2
e (π) = E, substituting for B.3 and

rearranging imply that π = E/
(
∑∞

t=0 βtm2
t
)
. Thus, payoffs for the deterrence strat-

egy for 1 are

U1
d =

π

(1− β)
=

E
(1− β)

(
∑∞

t=0 βtm2
t
) (30)

In equilibrium with entry deterrence the monopolist must find deterring entry
profitable: U1

d ≥ U1
e . Clearly, equation 30 implies that for an entry cost E high
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enough U1
d > U1

e .
By assumption, m2

t converges to 1 at a fast enough rate so that

∞

∑
t=0

(1−m2
t ) ≤ C.

Now take a sequence {βn} such that lim βn = 1. Let (U1
d(βn), U2

d(βn), U1
e (βn), U2

e (βn))

be the corresponding payoffs for 1 and 2 in deterrence and in the equilibrium with
entry at the discount rate βn. Let {πn}n, with

πn = E/

(
∞

∑
t=0

βt
nm2

t

)
(31)

for each n, be the corresponding sequence of candidate deterrence equilibrium
profit margins for the monopolist.

Set the entry cost E ≥ C×πM. Then profits of 1 and 2 if both enter and play the
mixed strategy equilibrium are bounded up by CπM, and so 2’s profits are always
lower than the entry costs. Therefore, if 1 sets bid and ask prices πn, 2 finds it
optimal not to enter. Without entry, equation 30 implies that profits for 1, U1

d(βn)

are greater than E. Thus, if E ≥ C × πM, the unique equilibrium is for 1 to deter
entry, analogously to the one period case.

Note that ∑t(1−m2
t ) ≤ C and 31 imply that π → 0 as β→ 1 and therefore p(π)

converges to ps = pb = p∗ as the discount rate r falls to zero and the equilibrium
allocation must converge to the competitive equilibrium.

Finally, relax the restriction that the monopolist is restricted to posting the same
bid and ask prices for every period but chooses a sequence of bid and ask prices.
Then the overall situation is similar but with added tedious notation. The monop-
olist chooses a sequence of profit shares {πt}∞

t=0 with corresponding sequence of
pairs of bid and ask prices p(πt). To deter entry the sequence {πt}must satisfy

∑ βtm2
t πt ≥ U2

e , (32)
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the profits of the monopolist under this strategy are

U1
d = ∑ βtπt. (33)

The profit-maximizing strategy for the monopolist is to choose, out of the se-
quences that satisfy the deterrence condition 32, the one that maximizes equa-
tion 33. Given that m2

t → 1 and is strictly increasing, there is a unique profit-
maximizing sequence {πt}, where the monopolist "frontloads" by extracting the
highest profits in the early periods as the entrant’s profits from undercutting are
relatively constrained by m2

t being smaller than in later periods from taking advan-
tage of these higher margins. These profits are strictly higher than the profits from
the strategy to commit to constant prices (π/(1− β)), and therefore the previous
arguments also apply in this case. �

C Characterization of the Equilibrium in the Random

Matching and Bargaining Economy

The equilibrium of the random matching and bargaining model approximates the
frictionless limit when search costs converge to zero (where the Law of One Price
holds). To see this, notice that as the discount rate r goes to zero, the left-hand side
of 14 does not depend on the buyer’s valuation x. Thus, the variation of the left-
hand side with regard to x converges to zero as r → 0, which implies that x−Vb(x)
converges to a constant as r → 0. In particular, for the marginal buyer type Rb we
know that V(Rb) = 0; thus, this constant is Rb. Therefore, x − Vb(x) = Rb for
x ≥ Rb when r = 0. Analogously for the seller case, y + Vs(z) = Rs for y ≤ Rs,
which from equation 11 implies that p(x, z) is constant on x and y.

Thus, the Law of One Price holds when the discount rate is zero. That is, if
consumers do not discount future payoffs, their expected value in participating in
the market is the expected surplus from the future transaction, which varies by
the same amount as their valuation. An increase in ε > 0 in a buyer’s valuation
implies an increase in ε in their valuation from participating in the market, so x−
Vb(x) is constant, and prices are constant in regard to buyers and sellers valuations.

46



In the frictionless case, as the joint surplus from a meeting is constant

[x− z−Vb(x)−Vs(z)] = Rb − Rs. (34)

Substituting this expression in equations 14 and 15 when r = 0 yields

cb =
m(θ)(1−ω)

θ
max{Rb − Rs, 0} (35)

cs = m(θ)ω max{Rb − Rs, 0}, (36)

and so Rb > Rs. This means that among consumers in the market, any buyer’s val-
uation is higher than any seller’s valuation. Therefore, all meetings result in trade
since there is no point in searching for other trade opportunities since they are all
executed at the same price. In this case, the Law of One Price holds, and substi-
tuting equation 34 and y + Vs(z) = Rs into equation 11 we find the equilibrium
price:

p̂ = ωRb + (1−ω)Rs. (37)

If search costs (cb, cs) converge to zero, then p̂ converges to the competitive price
and Rs, Rb both converge to the same value R, which is the competitive equilib-
rium price p∗. In terms of quantity traded, the search equilibrium allocation also
converges to sG(p∗), which is the quantity sold in competitive equilibrium.

As equations 14 and 15 are continuous on r, if search costs cb, cs are strictly posi-
tive and r is lower than some threshold r̂ > 0, then all meetings result in trade. This
implies that the steady-state equilibrium distribution of operating types (Φ, Γ) is
given by the densities of (F, G) on the types who participate (v ≥ Rb, c ≤ Rs). For
r ∈ (0, r̂), all meetings result in trade and there is price dispersion as p(x, z) varies
with x and y.

To solve for the equilibrium in this case, note that since all meetings result
in trade, which implies max{x − z − Vb(x) − Vs(z), 0} = x − z − Vb(x) − Vs(z).
If we substitute in equation 14 and differentiate with respect to x, we have that
V′b(x) = (1− ω)m(θ)/[rθ + (1− ω)], which is constant. Therefore, Vb(x) is linear
and setting V′b(Rb) = 0 yields the intercept. Using an analogous procedure, we can
solve for Vs(z). Therefore, we have
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Vb =
(1−ω)m(θ)

(1−ω)m(θ) + rθ
(x− Rb), (38)

Vs =
ωm(θ)

ωm(θ) + r
(Rs − z). (39)

Substituting into equation 11 yields the equilibrium price for the transaction:

p(x, z) = ω

[
rθx + (1−ω)m(θ)Rb

rθ + (1−ω)m(θ)

]
+ (1−ω)

[
ry + ωm(θ)Rs

ωm(θ) + r

]
. (40)

To solve for the set of equilibria where all meetings result in trade, we need to
determine (r̂, Rs, Rb). The market-clearing condition that Rs and Rb must satisfy is

G(Rs) = [1− F(Rb)]. (41)

Finally, to find Rs and Rb, substitute equation 38 into 14, which gives

cbθ

m(θ)
= (1−ω)

∫ [
Rb −

ry−ωm(θ)Rs

r + ωm(θ)

]
dΓ(z). (42)

In the steady-state when all meetings result in trade, the distributions of partici-
pating types are Γ(z) = G(z)/G(Rs) and Φ(z) = F(x)/[1− F(Rb)], and so

cbθ

m(θ)
= (1−ω)

∫ [
Rb −

ry−ωm(θ)Rs

r + ωm(θ)

]
dG(z)
G(Rs)

. (43)

Similarly, substituting equation 39 into 13 yields

cs

m(θ)
= ω

∫ [
−Rs −

rθx + (1−ω)m(θ)Rs

rθ + (1−ω)m(θ)

]
dF(z)
F(Rs)

. (44)

These two equations combined with the market-clearing condition determines (θ, Rs, Rb).
Mortensen and Wright (2002) show that there is a unique r̂ such that every meet-
ing results in trade if and only if r < r̂. The condition that every meeting results in
trade keeps the model easily tractable with positive search costs and price disper-
sion in equilibrium.
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As shown in Mortensen and Wright (2002), as the discount rate r and the search
costs (cb, cs) both converge to zero, then the search equilibrium prices all converge
to p∗ and that the search equilibrium converges to the competitive equilibrium.
Then, as it is the same allocation mechanism as the competitive equilibrium (as
all trades occur at the competitive price), it is informationally efficient at this fric-
tionless limit. We are interested in the allocations implemented by this mechanism
away from the limit.

C.1 Proof of Lemma 2

Proof. With N/2 types of buyers and N/2 types of sellers, the price vector of the
steady-state search equilibrium has (N/2)2 dimensions (as prices are defined for
pairs of buyers and sellers), while Ys has (N/2)2 dimensions. By analogous argu-
ment as for the competitive mechanism in Lemma 1, Ms is a 2(N/2)2-dimensional
manifold. �
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